使用anaconda配置标配版gpu的torch==1.2.0(30系列以下显卡)

简介: 使用anaconda配置标配版gpu的torch==1.2.0(30系列以下显卡)

环境内容


torch:1.2.0

torchvision:0.4.0


接下来要用到的所有安装文件——网盘下载(不用自己去下载啦):


链接:https://pan.baidu.com/s/1cSwNCRKY0syOt-NBEdr94Q

提取码:p002  


一、Anaconda环境配置


1、Anaconda的下载(可以跳过)


————————————————

新版本anaconda的下载:

安装最新的Anaconda,首先登录Anaconda的官网:Anaconda | Individual Edition。直接下载对应安装包就可以。


2、Anaconda的安装


打开下载好的安装包。


1dc618a0ed9580ce8bfa6facb208c08f.png


选择安装的位置,可以不安装在C盘。


5d4c6812c8535adbb050f4ddf2e1bce8.png


我选择了Add Anaconda to my PATH environment variable,这样会自动将anaconda装到系统的环境变量中,配置会更加方便一些。


46a9d80a6e05e4e3b19d57a0ee70bcdf.png


等待安装完之后,Anaconda的安装就结束了。


二、Cudnn和CUDA的下载和安装


我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。(当然高一点的版本也是没有问题的,但尽量不要低于)


1、Cudnn和CUDA的下载(已给)


具体下载过程包括注册等繁琐的步骤,既然已经给了安装包,为了保持精简就不在此赘述。


2、Cudnn和CUDA的安装


下载好之后可以打开exe文件进行安装。


1dc618a0ed9580ce8bfa6facb208c08f.png


  这一步最好保存自己的图片,方便最后配置环境变量的时候查看。


5d4c6812c8535adbb050f4ddf2e1bce8.png


这里选择自定义。


46a9d80a6e05e4e3b19d57a0ee70bcdf.png


然后直接点下一步就行了。


66ba272a0bfc97be54a5fa679e3d5482.png


安装完后在C盘这个位置可以找到根目录。

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

然后大家把Cudnn的内容进行解压。

88b9988b40447cb37c7e3c492d49867f.png

把这里面的内容直接复制到C盘的根目录下就可以了。

80308c27701d3aead18db6c7b167f308.png

 安装完成后配置环境,Path需要手动添加如下路径,对应上一步的安装路径:此电脑右键->属性->高级系统设置->环境变量->双击系统环境变量中的Path点击新建,检查,若在系统变量中已有路径,无需执行此步。 (--一条一条添加--)


C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\CUPTI\lib64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\bin\win64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\common\lib\x64

1dc618a0ed9580ce8bfa6facb208c08f.png

    检查安装是否成功,cmd中输入 nvcc -V(V一定要大写)


5d4c6812c8535adbb050f4ddf2e1bce8.png


三、配置torch环境


1、pytorch环境的创建与激活


打开anaconda prompt:

46a9d80a6e05e4e3b19d57a0ee70bcdf.png

conda create –n pytorch python=3.6 -y
 activate pytorch

这里一共存在两条指令:

前面一条指令用于创建一个名为pytorch的环境,该环境的python版本为3.6。

后面一条指令用于激活一个名为pytorch的环境。


由于我们所有的操作都要在对应环境中进行,所以在进行库的安装前需要先激活环境。


2、pytorch库的安装


此时cmd窗口的样子应该是这样的:

5d4c6812c8535adbb050f4ddf2e1bce8.png

输入以下命令安装Pytorch


pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html


3、其它依赖库的安装


但如果想要跑深度学习模型,还有一些其它的依赖库需要安装。具体如下


scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0

如果想要更便捷的安装可以在桌面或者其它地方创建一个requirements.txt文件,复制上述内容到txt文件中。

1dc618a0ed9580ce8bfa6facb208c08f.png

输入命令:


小技巧:只需要把文件移动文件到anaconda/cmd窗口中可以自动获取该文件的绝对路径。


pip install -r C:\Users\33232\Desktop\requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple/


四、使用pytorch-gpu环境 (可看我以往教程最后一步)


深度学习环境配置——windows下的tensorflow-cpu=2.2.0环境配置_阿良是炼丹师的博客-CSDN博客_tensorflow-cpu


完毕!


如果大家觉得本文章对你有帮助,麻烦点赞+收藏一下,谢谢!  


相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
6月前
|
机器学习/深度学习 并行计算 PyTorch
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,分析其根源为预编译二进制文件不支持sm_120架构,并提出解决方案:使用PyTorch Nightly版本、更新CUDA工具包至12.8。通过清理环境并安装支持新架构的组件,成功解决兼容性问题。文章总结了深度学习环境中硬件与框架兼容性的关键策略,强调Nightly构建版本和环境一致性的重要性,为开发者提供参考。
3137 64
英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
1993 3
|
机器学习/深度学习 人工智能 API
薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion
薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion
1640 4
薅羊毛!阿里云免费GPU云主机畅玩AI绘画,免费领取阿里云v100显卡搭建AI绘画利器Stable Diffusion
|
Ubuntu Shell Docker
GPU_nvidia-container-toolkit安装和配置
GPU_nvidia-container-toolkit安装和配置
3382 1
|
机器学习/深度学习 并行计算 算法框架/工具
Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
|
机器学习/深度学习 存储 弹性计算
阿里云GPU服务器价格多少钱?2024年阿里云GPU服务器价格配置及性能测评
2024年阿里云GPU服务器是一款高性能的计算服务器,基于GPU应用的计算服务,多适用于视频解码、图形渲染、深度学习、科学计算等应用场景。阿里云GPU服务器具有超强的计算能力、网络性能出色、购买方式灵活、高性能实例存储等特点。 阿里云提供了多种配置的GPU服务器,包括gn6v、gn6i、vgn6i-vws和gn6e等,这些服务器配备了不同型号的GPU计算卡、不同规格的内存和存储空间,可以满足不同用户的计算需求。同时,阿里云还为新用户提供了特惠价格,包年购买更是低至3折起,使得用户可以更加经济地购买到高性能的GPU服务器。
716 0
|
弹性计算 大数据 测试技术
2024年阿里云服务器价格配置表汇总(轻量服务器、ECS服务器、游戏服务器、GPU服务器)
今天整理了阿里云服务器价格,包含了阿里云轻量应用服务器、阿里云ECS云服务器、阿里云游戏服务器、阿里云GPU云服务器。阿里云服务器租用费用,云服务器ECS经济型e实例2核2G、3M固定带宽99元一年、ECS u1实例2核4G、5M固定带宽、80G ESSD Entry盘优惠价格199元一年,轻量应用服务器2核2G3M带宽轻量服务器一年61元、2核4G4M带宽轻量服务器一年165元12个月、2核4G服务器30元3个月,幻兽帕鲁4核16G和8核32G服务器配置,云服务器ECS可以选择经济型e实例、通用算力u1实例、ECS计算型c7、通用型g7、c8i、g8i等企业级实例规格。
1171 0
|
5月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
1000 61
|
8月前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
|
6月前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。

热门文章

最新文章