如何用Pytorch加载部分权重

简介: 在我做实验的过程中,由于卷积神经网络层数的更改,导致原始网络模型的权重加载失败,经过分析,是因为不匹配造成的,如下方式可以解决.

在我做实验的过程中,由于卷积神经网络层数的更改,导致原始网络模型的权重加载失败,经过分析,是因为不匹配造成的,如下方式可以解决.

import torch
import models
checkpoint = torch.load("./logs/01origial/model_best.pth")
model = models.__dict__["vgg"](dataset="Beans", depth=16) #提取网络结结构,分别是数据集,网络的深度和每层的输出通道数
model.load_state_dict(checkpoint['state_dict'])
model_10 = models.__dict__["vgg10"](dataset="Beans", depth=10)
model_dict = model.state_dict()
model_10_dict = model_10.state_dict()
pretrained_dict = {k: v for k, v in model_dict.items() if k in model_10_dict.keys()}
model_10_dict.update(pretrained_dict)
model_10.load_state_dict(model_10_dict)
目录
打赏
0
0
0
0
1
分享
相关文章
人工智能平台PAI产品使用合集之Alink是否加载预训练好的pytorch模型
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
212 10
PyTorch进阶:模型保存与加载,以及断点续训技巧
【4月更文挑战第17天】本文介绍了PyTorch中模型的保存与加载,以及断点续训技巧。使用`torch.save`和`torch.load`可保存和加载模型权重和状态字典。保存模型时,可选择仅保存轻量级的状态字典或整个模型对象。加载时,需确保模型结构与保存时一致。断点续训需保存训练状态,包括epoch、batch index、optimizer和scheduler状态。中断后,加载这些状态以恢复训练,节省时间和资源。
1084 0

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问