HiveSQL分位数函数percentile()使用详解+实例代码

简介: HiveSQL分位数函数percentile()使用详解+实例代码

前言


作为数据分析师每个SQL数据库的函数以及使用技能操作都得点满,尤其是关于统计函数的使用方法。关于统计出数据的中位数,众数和分位数的方法必须掌握几种,一般在实际业务上大部分都是以写SQL查询为主,因为如果想用Python的Pandas去做数据分析还得将数据导出来读出来,输出了结果还得再倒进去,十分的麻烦。若是能在SQL上面直接处理简单问题,那么效率要远高于导出做Pandas处理。本篇文章主要介绍percentile分位数函数使用方法,后几篇文章将主要详解每个SQL中统计函数的使用方法,感兴趣觉得帮助大的朋友可以关注。本篇博客博主将长期维护,若有错误请在评论区指出。


HiveSQL中关于分位数的计算主要是通过percentile()percentile_approx()这两个函数来实现。


一、percentile()


函数使用语法:


percentile(col, p)

参数说明:


col:指定需要计算的列名,并且列的值必须为int类型。

p:指定得到的分位数数值,取值范围为[0,1],若为0.5则为中位数,若为0.75则为四分之三分位数,依此类推。

示例使用:

SELECT percentile(num,0.2) as two_parts#取二分位数
FROM dbbasename.table

c6910c3f4d344a019353669ced5640f1.png

另外还可以已数列的方式输入p,则也回返回一个数列,包含其输入数列对应的百分位数:


1. SELECT percentile(num,array(0.2,0.4,0.6)) as parts#取二分位数
2. FROM dbbasename.table


85a844654e7540fea35cc9d1d3910db3.png

二、percentile_approx()


函数使用语法:


percentile_approx(DOUBLE col,p,B)


求近似的第p个百分位数,p必须介于0和1之间,返回类型为double,但是col字段支持浮点类型。参数B控制内存消耗的近似精度,B越大,结果的精度越高。默认值为10000。当col字段中的distinct值的个数小于B时,结果就为准确的百分位数。

SELECT percentile_approx(num,0.2,9999) as two_parts#取二分位数
FROM dbbasename.table

baaf4e7270934265bc4f42f1f06ac58d.png


当然一样也能输出数列:


1. SELECT percentile_approx(num,array(0.25,0.5,0.75)) as parts#取二分位数
2. FROM dbbasename.table


cfd5a4f9c12846f2ba33b34ff995ceb0.png

目录
打赏
0
0
0
0
33
分享
相关文章
【推荐】排序模型的评价指标nDCG
nDCG(Normalized Discounted Cumulative Gain)归一化折损累计增益是一种用于评估排序模型性能的指标,它考虑了两个方面:排序的正确性和相关性的程度。
2446 0
SQL老司机,在SQL中计算 array & map & json数据
场景 通常,我们处理数据,一列数据类型要么是字符串,要么是数字,这些都是primitive类型的数据。在某些比较复杂的业务场景下,我们会在一列中使用复杂的格式,例如数组array, 对象(map),json等格式来表示复杂的数据,例如: __source__: 11.
10304 0
Hive函数全解——思维导图 + 七种函数类型
Hive函数全解——思维导图 + 七种函数类型
284 2
Hive函数全解——思维导图 + 七种函数类型
Hive 特殊的数据类型 Array、Map、Struct
在Hive中,`Array`、`Map`和`Struct`是三种特殊的数据类型。`Array`用于存储相同类型的列表,如`select array(1, "1", 2, 3, 4, 5)`会产生一个整数数组。`Map`是键值对集合,键值类型需一致,如`select map(1, 2, 3, "4")`会产生一个整数到整数的映射。`Struct`表示结构体,有固定数量和类型的字段,如`select struct(1, 2, 3, 4)`创建一个无名结构体。这些类型支持嵌套使用,允许更复杂的结构数据存储。例如,可以创建一个包含用户结构体的数组来存储多用户信息
1365 0
异动分析技术解决方案—异动归因之指标拆解
唯一不变的是变化, 在拥抱它前,请事先探知、归因、并充分准备。 在相对完善的指标体系建设背景下,我们需要通过指标以及指标波动的解读来描述、追踪、推动业务。当一个指标波动时,我们首先需要从业务视角判断其波动是否异常,即异动检测,其次判断异常背后的原因是什么,即异动归因。 归因的方法有多种,这篇文章的重点是指标拆解,也是我们做业务分析时最常用到的方法。 我们的目的是解放人力,将指标拆解实现自动化,一方面可以加快业务迭代速度,快速定位问题;另一方面可以对可能产生异动的维度进行全局量化,增强可比性,明确下一步的业务行动点的优先级。自动化异变归因的目的是为了尽快判断并抓住机遇,寻求以数据驱动作为灯塔
9069 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问