软件测试面试题:lr中 ,什么是逐步递增?你如何来设置?

简介: 软件测试面试题:lr中 ,什么是逐步递增?你如何来设置?

lr中 ,什么是逐步递增?你如何来设置?


虚拟用户数随着负载时间逐渐增加,可以帮助确定系统响应时间减慢的准确时间点。


可以在“加压”选项卡中进行设置:如下图所示,将设置更改为:“每30秒启动2个Vuser”

相关文章
|
2月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
145 0
|
1月前
|
测试技术 API
在性能测试中,怎样设置合理的迭代次数?
在性能测试中,迭代次数的合理设置至关重要,它直接影响到测试结果的准确性和可靠性。
36 2
|
2月前
|
测试技术 Python
自动化测试项目学习笔记(一):unittest简单运行(初始化,清除,设置测试行为)
本文介绍了Python的unittest框架的基础用法,包括测试初始化(setup)、清除(tearDown)函数的使用,以及assertEqual和assertGreaterEqual等断言方法,并展示了如何创建测试用例,强调了测试函数需以test_开头才能被运行。
68 1
自动化测试项目学习笔记(一):unittest简单运行(初始化,清除,设置测试行为)
|
1月前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
63 1
|
3月前
|
运维 测试技术
拆分软件测试流程,一张图秒杀所有面试
本文主要介绍了软件测试流程的核心内容,包括需求分析、测试用例编写、测试执行、缺陷提交及回归测试等关键步骤。以迭代测试为例,详细说明了每个环节的具体操作和注意事项,并提供了一张测试流程图以便理解。测试流程确保了软件质量,是面试中常见的考察点。
73 7
拆分软件测试流程,一张图秒杀所有面试
|
2月前
|
NoSQL 测试技术 Redis
第一次面试总结 - 迈瑞医疗 - 软件测试
本文是作者对迈瑞医疗软件测试岗位的第一次面试总结,面试结果非常好,但面试过程中没有提问太多技术性问题,主要围绕个人介绍、互相了解、个人规划和项目亮点进行,因此作者认为这次面经的学习意义不大。作者还提到了实习岗位的待遇和工作内容,以及对不同阶段求职者的建议。
54 2
|
4月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
85 3
|
4月前
|
SQL 安全 测试技术
[go 面试] 接口测试的方法与技巧
[go 面试] 接口测试的方法与技巧
|
4月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
68 1
|
4月前
|
机器学习/深度学习
【机器学习】逻辑回归LR的推导及特性是什么,面试回答?
逻辑回归(LR)的推导和特性的详细解释,包括其作为二分类模型的基本原理、损失函数(对数损失函数),以及决策树的特性,如不需要先验假设、高效性、易解释性、对缺失值的不敏感性,以及对冗余属性的鲁棒性。
49 1