【云原生 | 从零开始学Kubernetes】二十、Service代理kube-proxy组件详解

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
公网NAT网关,每月750个小时 15CU
简介: kube-proxy组件详解

kube-proxy组件详解


kube-proxy 组件介绍

kube-proxy 三种工作模式

1、Userspace 方式:

2、iptables 方式:

3、ipvs 方式:

kube-proxy 生成的 iptables 规则分析

1、service 的 type 类型是 ClusterIp,iptables 规则分析

2、service 的 type 类型是 nodePort,iptables 规则分析


kube-proxy 组件介绍


Kubernetes service 只是把应用对外提供服务的方式做了抽象,真正的应用跑在 Pod 中的 container 里,我们的请求转到 kubernetes nodes 对应的 nodePort 上,那么 nodePort 上的请求是如何进一步转到提供后台服务的 Pod 的呢? 就是通过 kube-proxy 实现的


kube-proxy 部署在 k8s 的每一个 Node 节点上,是 Kubernetes 的核心组件,我们创建一个 service 的时候,kube-proxy 会在 iptables 中追加一些规则,为我们实现路由与负载均衡的功能。在 k8s1.8 之前,kube-proxy 默认使用的是 iptables 模式,通过各个 node 节点上的 iptables 规则来实现 service 的负载均衡,但是随着 service 数量的增大,iptables 模式由于线性查找匹配、全量更新等特点,其性能 会显著下降。从 k8s 的 1.8 版本开始,kube-proxy 引入了 IPVS 模式,IPVS 模式与 iptables 同样基于 Netfilter,但是采用的 hash 表,因此当 service 数量达到一定规模时,hash 查表的速度优势就会显现出来,从而提高 service 的服务性能。


kubectl get pods -n kube-system -o wide


service 是一组 pod 的服务抽象,相当于一组 pod 的 LB,负责将请求分发给对应的 pod。service 会为这个 LB 提供一个 IP,一般称为 cluster IP。kube-proxy 的作用主要是负责 service 的实现,具体来说,就是实现了内部从 pod 到 service 和外部的从 node port 向 service 的访问。


1、kube-proxy 其实就是管理 service 的访问入口,包括集群内 Pod 到 Service 的访问和集群外访问 service。


2、kube-proxy 管理 sevice 的 Endpoints,该 service 对外暴露一个 Virtual IP,也可以称为是 Cluster IP, 集群内通过访问这个 Cluster IP:Port 就能访问到集群内对应的 serivce 下的 Pod。


kube-proxy 三种工作模式


1、Userspace 方式:


61.png


Client Pod 要访问 Server Pod 时,它先将请求发给内核空间中的 service iptables 规则,由它再将请求转给监听在指定套接字上的 kube-proxy 的端口,kube-proxy 处理完请求,并分发请求到指定Server Pod 后,再将请求转发给内核空间中的 service ip,由 service iptables 将请求转给各个节点中 的 Server Pod。


这个模式有很大的问题,客户端请求先进入内核空间的,又进去用户空间访问 kube-proxy,由 kube-proxy 封装完成后再进去内核空间的 iptables,再根据 iptables 的规则分发给各节点的用户空间的 pod。由于其需要来回在用户空间和内核空间交互通信,因此效率很差。在 Kubernetes 1.1 版本之前,userspace 是默认的代理模型。


2、iptables 方式:


62.png


客户端 IP 请求时,直接请求本地内核 service ip,根据 iptables 的规则直接将请求转发到到各 pod 上,因为使用 iptable NAT 来完成转发,也存在不可忽视的性能损耗。另外,如果集群中存上万的 Service/Endpoint,那么 Node 上的 iptables rules 将会非常庞大,性能还会再打折 iptables 代理模式由 Kubernetes 1.1 版本引入,自 1.2 版本开始成为默认类型。


3、ipvs 方式:


63.png


Kubernetes 自 1.9-alpha 版本引入了 ipvs 代理模式,自 1.11 版本开始成为默认设置。客户端请求时到达内核空间时,根据 ipvs 的规则直接分发到各 pod 上。kube-proxy 会监视 Kubernetes Service 对象和 Endpoints,调用 netlink 接口以相应地创建 ipvs 规则并定期与 Kubernetes Service 对象和 Endpoints 对象同步 ipvs 规则,以确保 ipvs 状态与期望一致。访问服务时,流量将被重定向到其中一个后端 Pod。与 iptables 类似,ipvs 基于 netfilter 的 hook 功能,但使用哈希表作为底层数据结构并在内核空间中工作。这意味着 ipvs 可以更快地重定向流量,并且在同步代理规则时具有更好的性能。此外,ipvs 为负载均衡算法提供了更多选项,例如:


rr:轮询调度  
lc:最小连接数  
dh:目标哈希  
sh:源哈希  
sed:最短期望延迟  
nq:不排队调度 


如果某个服务后端 pod 发生变化,标签选择器适应的 pod 又多一个,适应的信息会立即反映到 apiserver 上,而 kube-proxy 一定可以 watch 到 etc 中的信息变化,而将它立即转为 ipvs 或者 iptables 中的规则,这一切都是动态和实时的,删除一个 pod 也是同样的原理。


64.png


以上不论哪种,kube-proxy 都通过 watch 的方式监控着 apiserver 写入 etcd 中关于 Pod 的最新状态信息,它一旦检查到一个 Pod 资源被删除了或新建了,它将立即将这些变化反应在 iptables 或 ipvs 规则中,以便 iptables 和 ipvs 在调度 Clinet Pod 请求到 Server Pod时不会出现 Server Pod 不存在的情况。自 k8s1.11 以后,service 默认使用 ipvs 规则,若 ipvs 没有被激活,则降级使用 iptables 规则.


kube-proxy 生成的 iptables 规则分析


1、service 的 type 类型是 ClusterIp,iptables 规则分析


在 k8s 创建的 service,虽然有 ip 地址,但是 service 的 ip 是虚拟的,不存在物理机上的,是在 iptables 或者 ipvs 规则里的。


[root@k8smaster service]# kubectl apply -f pod_test.yaml 
[root@k8smaster service]# kubectl apply -f service_test.yaml 
[root@k8smaster node]# kubectl get svc -l run=my-nginx
NAME       TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)   AGE
my-nginx   ClusterIP   10.105.254.244   <none>        80/TCP    15s
[root@k8smaster node]# kubectl get pods -l run=my-nginx -o wide
NAME                        READY   STATUS    RESTARTS   AGE   IP           NODE       NOMINATED NODE  
my-nginx-5898cf8d98-5trvw   1/1     Running   0          40s   10.244.1.5   k8snode2   <none>          
my-nginx-5898cf8d98-phfqr   1/1     Running   0          40s   10.244.1.4   k8snode2   <none>          
[root@k8smaster node]# iptables -t nat -L | grep 10.105.254.244
KUBE-MARK-MASQ  tcp  -- !10.244.0.0/16        10.105.254.244       /* default/my-nginx: cluster IP */ tcp dpt:http
KUBE-SVC-BEPXDJBUHFCSYIC3  tcp  --  anywhere             10.105.254.244       /* default/my-nginx: cluster IP */ tcp dpt:http
[root@k8smaster node]# iptables -t nat -L | grep KUBE-SVC-BEPXDJBUHFCSYIC3
KUBE-SVC-BEPXDJBUHFCSYIC3  tcp  --  anywhere             10.105.254.244       /* default/my-nginx: cluster IP */ tcp dpt:http     #把service关联的pod做了转发
Chain KUBE-SVC-BEPXDJBUHFCSYIC3 (1 references)    
[root@k8smaster node]# iptables -t nat -L | grep 10.244.1.5
KUBE-MARK-MASQ  all  --  10.244.1.5           anywhere             /* default/my-nginx: */
DNAT       tcp  --  anywhere             anywhere             /* default/my-nginx: */ tcp to:10.244.1.5:80
#DNAT转发 kubesvc接收请求,在过滤podip的时候有个mark也会标记ip,然后做了一个dnat转发到10.244.1.5:80这个pod上
#通过上面可以看到之前创建的 service,会通过 kube-proxy 在 iptables 中生成一个规则,来实现流量路由,有一系列目标为 KUBE-SVC-xxx 链的规则,每条规则都会匹配某个目标 ip 与端口。也就是说访问某个 serivce的ip和端口请求会由 KUBE-SVC-xxx 链来通过DNAT转发到对应的podip和端口上。


2、service 的 type 类型是 nodePort,iptables 规则分析


[root@k8smaster node]# kubectl apply -f pod_nodeport.yaml 
deployment.apps/my-nginx-nodeport created
[root@k8smaster node]# kubectl apply -f service_nodeport.yaml 
service/my-nginx-nodeport created
[root@k8smaster node]# kubectl get pods -l run=my-nginx-nodeport -o wide
NAME                                 READY   STATUS    RESTARTS   AGE   IP           NODE       NOMINATED
my-nginx-nodeport-5fccbb754b-m4csx   1/1     Running   0          34s   10.244.1.7   k8snode2   <none>      
my-nginx-nodeport-5fccbb754b-rg48l   1/1     Running   0          34s   10.244.1.6   k8snode2   <none>
[root@k8smaster node]# kubectl get svc -l run=my-nginx-nodeport 
NAME                TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
my-nginx-nodeport   NodePort   10.105.58.82   <none>        80:30380/TCP   39s
[root@k8smaster node]# iptables -t nat -S | grep 30380 
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/my-nginx-nodeport:" -m tcp --dport 30380 -j KUBE-MARK-MASQ
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/my-nginx-nodeport:" -m tcp --dport 30380 -j KUBE-SVC-6JXEEPSEELXY3JZG
#一个是mark链一个是svc 在访问物理机ip和端口,访问会先经过这两个链
[root@k8smaster node]# iptables -t nat -S | grep KUBE-SVC-6JXEEPSEELXY3JZG
-N KUBE-SVC-6JXEEPSEELXY3JZG
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/my-nginx-nodeport:" -m tcp --dport 30380 -j KUBE-SVC-6JXEEPSEELXY3JZG
-A KUBE-SERVICES -d 10.105.58.82/32 -p tcp -m comment --comment "default/my-nginx-nodeport: cluster IP" -m tcp --dport 80 -j KUBE-SVC-6JXEEPSEELXY3JZG
-A KUBE-SVC-6JXEEPSEELXY3JZG -m comment --comment "default/my-nginx-nodeport:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-36FBCF7ZW3VDH33Q
-A KUBE-SVC-6JXEEPSEELXY3JZG -m comment --comment "default/my-nginx-nodeport:" -j KUBE-SEP-K2MGI3AJIGBK3IJ5
#会通过iptables的probability机制有0.50的概率进入KUBE-SEP-36FBCF7ZW3VDH33Q这个链,剩下50%还是最后那个GBK3IJ5这个链
[root@k8smaster node]# iptables -t nat -S | grep KUBE-SEP-36FBCF7ZW3VDH33
-N KUBE-SEP-36FBCF7ZW3VDH33Q
-A KUBE-SEP-36FBCF7ZW3VDH33Q -s 10.244.1.6/32 -m comment --comment "default/my-nginx-nodeport:" -j KUBE-MARK-MASQ
-A KUBE-SEP-36FBCF7ZW3VDH33Q -p tcp -m comment --comment "default/my-nginx-nodeport:" -m tcp -j DNAT --to-destination 10.244.1.6:80
-A KUBE-SVC-6JXEEPSEELXY3JZG -m comment --comment "default/my-nginx-nodeport:" -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-36FBCF7ZW3VDH33Q
#-A KUBE-SEP-36FBCF7ZW3VDH33Q -p tcp -m comment --comment "default/my-nginx-nodeport:" -m tcp -j DNAT --to-destination 10.244.1.6:80 是做了一个dnat把请求给10.244.1.6这个pod的80端口了 下面可以看到ip是相同的
[root@k8smaster node]# kubectl get pods -l run=my-nginx-nodeport -o wide
NAME                                 READY   STATUS    RESTARTS   AGE     IP           NODE       NOMINATED
my-nginx-nodeport-5fccbb754b-m4csx   1/1     Running   0          8m24s   10.244.1.7   k8snode2   <none>    
my-nginx-nodeport-5fccbb754b-rg48l   1/1     Running   0          8m24s   10.244.1.6   k8snode2   <none>    
[root@k8smaster node]# iptables -t nat -S | grep KUBE-SEP-K2MGI3AJIGBK3IJ5
-N KUBE-SEP-K2MGI3AJIGBK3IJ5
-A KUBE-SEP-K2MGI3AJIGBK3IJ5 -s 10.244.1.7/32 -m comment --comment "default/my-nginx-nodeport:" -j KUBE-MARK-MASQ
-A KUBE-SEP-K2MGI3AJIGBK3IJ5 -p tcp -m comment --comment "default/my-nginx-nodeport:" -m tcp -j DNAT --to-destination 10.244.1.7:80
-A KUBE-SVC-6JXEEPSEELXY3JZG -m comment --comment "default/my-nginx-nodeport:" -j KUBE-SEP-K2MGI3AJIGBK3IJ5
#也是一个dnat,把请求分给另外一个pod,通过这两个链50%的概率来转发到两个pod上
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
6天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
28 2
|
6天前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
26 1
|
10天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
11天前
|
存储 运维 Kubernetes
云原生之旅:Kubernetes的弹性与可扩展性探索
【10月更文挑战第32天】在云计算的浪潮中,云原生技术以其独特的魅力成为开发者的新宠。本文将深入探讨Kubernetes如何通过其弹性和可扩展性,助力应用在复杂环境中稳健运行。我们将从基础架构出发,逐步揭示Kubernetes集群管理、服务发现、存储机制及自动扩缩容等核心功能,旨在为读者呈现一个全景式的云原生平台视图。
25 1
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(五)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(五)
251 0
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(五)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(四)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(四)
236 0
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(四)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(三)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(三)
239 0
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(三)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(二)
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(二)
199 0
KUBERNETES04_Service服务ClusterIP、NodePort方式、Ingress域名访问、路径重写、限流操作(二)
|
23天前
|
JSON Kubernetes 容灾
ACK One应用分发上线:高效管理多集群应用
ACK One应用分发上线,主要介绍了新能力的使用场景
|
24天前
|
Kubernetes 持续交付 开发工具
ACK One GitOps:ApplicationSet UI简化多集群GitOps应用管理
ACK One GitOps新发布了多集群应用控制台,支持管理Argo CD ApplicationSet,提升大规模应用和集群的多集群GitOps应用分发管理体验。