2.3操作系统(进程同步 进程互斥 软件实现 硬件实现)

简介: 1.进程同步2.进程互斥3.进程互斥的软件实现方法1.单标志法2.双标志先检查法3.双标志后检查法4.Peterson 算法4.进程互斥的硬件实现方法1.中断屏蔽方法2.TestAndSet指令3.Swap指令

1.进程同步


并发行带来了异步性,有时需要通过进程同步解决这种异步问题。


有的进程之间需要相互配合的完成工作,各进程的工作推进需要遵循一定的先后顺序。

2.进程互斥


进程的“并发”需要“共享”的支持。各个并发执行的进程不可避免的需要共享一些系统资源(比如内存,又比如打印机、摄像头这样的I/O设备)





我们把一个时间段内只允许一个进程使用的资源称为临界资源。许多物理设备(比如摄像头、打印机)都属于临界资源。此外还有许多变量、数据、内存缓冲区等都属于临界资源。


对临界资源的访问,必须互斥地进行。互斥,亦称间接制约关系。进程互斥指当一个进程访问某临界资源时,另一个想要访问该临界资源的进程必须等待。当前访问临界资源的进程访问结束,释放该资源之后,另一个进程才能去访问临界资源。


对临界资源的互斥访问,可以在逻辑上分为如下四个部分:






注意:


①、临界区是进程中访问临界资源的代码段。


②、进入区和退出区是负责实现互斥的代码段。


③、临界区也可称为“临界段”。


为了实现对临界资源的互斥访问,同时保证系统整体性能,需要遵循以下原则:


①、空闲让进。临界区空闲时,可以允许一个请求进入临界区的进程立即进入临界区;


②、忙则等待。当已有进程进入临界区时,其他试图进入临界区的进程必须等待;


③、有限等待。对请求访问的进程,应保证能在有限时间内进入临界区(保证不会饥饿);


④、让权等待。当进程不能进入临界区时,应立即释放处理机,防止进程忙等待。


3.进程互斥的软件实现方法


1.单标志法


算法思想:两个进程在访问完临界区后会把使用临界区的权限转交给另一个进程。也就是说每个进程进入临界区的权限只能被另一个进程赋予






turn 的初值为 0,即刚开始只允许 0 号进程进入临界区。


若 P1 先上处理机运行,则会一直卡在 ⑤。直到 P1 的时间片用完,发生调度,切换 P0 上处理机运行。


代码 ① 不会卡住 P0,P0 可以正常访问临界区,在 P0 访问临界区期间即时切换回 P1,P1依然会卡在⑤。


只有 P0 在退出区将 turn 改为 1 后,P1才能进入临界区。


因此,该算法可以实现“同一时刻最多只允许一个进程访问临界区”.


只能按 P0 → P1 → P0 → P1 →……这样轮流访问。这种必须“轮流访问”带来的问题是,如果此时允许进入临界区的进程是 P0,而 P0 一直不访问临界区,那么虽然此时临界区空闲,但是并不允许 P1 访问。因此, 单标志法存在的主要问题是:违背“空闲让进”原则。


2.双标志先检查法



算法思想:设置一个布尔型数组 flag[],数组中各个元素用来标记各进程想进入临界区的意愿,比如“flag[0] = ture”意味着 0 号进程P0 现在想要进入临界区。每个进程在进入临界区之前先检查当前有没有别的进程想进入临界区,如果没有,则把自身对应的标志 flag[i] 设为 true,之后开始访问临界区。





若按照 ①⑤②⑥③⑦….的顺序执行,P0 和 P1 将会同时访问临界区。


因此,双标志先检查法的主要问题是:违反“忙则等待”原则。


原因在于,进入区的“检查”和“上锁” 两个处理不是一气呵成的。“检查”后,“上锁”前可能发生进程切换。

3.双标志后检查法


算法思想:双标志先检查法的改版。前一个算法的问题是先“检查”后“上锁”,但是这两个操作又无法一气呵成,因此导致了两个进程同时进入临界区的问题。因此,人们又想到先“上锁”后“检查”的方法,来避免上述问题。





若按照 ①⑤②⑥….的顺序执行,P0 和 P1 将都无法进入临界区


因此,双标志后检查法虽然解决了“忙则等待”的问题,但是又违背了“空闲让进”和“有限等待”原则,会因各进程都长期无法访问临界资源而产生“饥饿”现象。


两个进程都争着想进入临界区,但是谁也不让谁,最后谁都无法进入临界区


4.Peterson 算法


算法思想:结合双标志法、单标志法的思想。如果双方都争着想进入临界区,那可以让进程尝试“孔融让梨”(谦让)。做一个有礼貌的进程。







Peterson 算法用软件方法解决了进程互斥问题,遵循了空闲让进、忙则等待、有限等待 三个原则,但是依然未遵循让权等待的原则。


4.进程互斥的硬件实现方法


1.中断屏蔽方法



利用“开/关中断指令”实现(与原语的实现思想相同,即在某进程开始访问临界区到结束访问为止都不允许被中断,也就不能发生进程切换,因此也不可能发生两个同时访问临界区的情况)




优点:简单、高效


缺点:不适用于多处理机;只适用于操作系统内核进程,不适用于用户进程(因为开/关中断指令只能运行在内核态,这组指令如果能让用户随意使用会很危险)


2.TestAndSet指令



简称 TS 指令,也有地方称为 TestAndSetLock 指令,或 TSL 指令。


TSL 指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。以下是用C语言描述的逻辑。




若刚开始 lock 是 false,则 TSL 返回的 old 值为 false,while 循环条件不满足,直接跳过循环,进入临界区。若刚开始 lock 是 true,则执行 TLS 后 old 返回的值为 true,while 循环条件满足,会一直循环,直到当前访问临界区的进程在退出区进行“解锁”。


相比软件实现方法,TSL 指令把“上锁”和“检查”操作用硬件的方式变成了一气呵成的原子操作。


优点:实现简单,无需像软件实现方法那样严格检查是否会有逻辑漏洞;适用于多处理机环境


缺点:不满足“让权等待”原则,暂时无法进入临界区的进程会占用CPU并循环执行TSL指令,从而导致“忙等”。


3.Swap指令


有的地方也叫 Exchange 指令,或简称 XCHG 指令。


Swap 指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。以下是用C语言描述的逻辑




逻辑上来看 Swap 和 TSL 并无太大区别,都是先记录下此时临界区是否已经被上锁(记录在 old 变量上),再将上锁标记 lock 设置为 true,最后检查 old,如果 old 为 false 则说明之前没有别的进程对临界区上锁,则可跳出循环,进入临界区。


优点:实现简单,无需像软件实现方法那样严格检查是否会有逻辑漏洞;适用于多处理机环境


缺点:不满足“让权等待”原则,暂时无法进入临界区的进程会占用CPU并循环执行TSL指令,从而导致“忙等”。


相关文章
|
13天前
|
消息中间件 人工智能 分布式计算
探索操作系统的核心:进程管理的艺术
在现代计算的广阔领域中,操作系统扮演着至关重要的角色,它不仅是用户与计算机硬件之间的桥梁,更是确保系统稳定、高效运行的指挥官。本文旨在深入探讨操作系统中一个核心组件——进程管理的奥秘,揭示其背后的原理、机制以及对现代计算环境的重要性。
|
10天前
|
算法 调度 UED
探索操作系统的心脏:深入理解进程调度
【10月更文挑战第7天】在数字世界的海洋中,操作系统是那艘承载着软件与硬件和谐共处的巨轮。本文将带你潜入这艘巨轮的核心区域——进程调度系统,揭示它如何精准控制任务的执行顺序,保障系统的高效运行。通过深入浅出的语言,我们将一起解码进程调度的奥秘,并借助代码示例,直观感受这一机制的魅力所在。准备好,让我们启航吧!
|
8天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
12 1
|
8天前
|
算法 安全 调度
深入理解操作系统:进程与线程的管理
【10月更文挑战第9天】在数字世界的心脏跳动着的,不是别的,正是操作系统。它如同一位无形的指挥家,协调着硬件与软件的和谐合作。本文将揭开操作系统中进程与线程管理的神秘面纱,通过浅显易懂的语言和生动的比喻,带你走进这一复杂而又精妙的世界。我们将从进程的诞生讲起,探索线程的微妙关系,直至深入内核,理解调度算法的智慧。让我们一起跟随代码的脚步,解锁操作系统的更多秘密。
9 1
|
10天前
|
算法 调度 UED
深入理解操作系统的进程调度算法
【10月更文挑战第7天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。它不仅影响系统的性能和用户体验,还直接关系到资源的合理分配。本文将通过浅显易懂的语言和生动的比喻,带你一探进程调度的秘密花园,从最简单的先来先服务到复杂的多级反馈队列,我们将一起见证算法如何在微观世界里编织宏观世界的和谐乐章。
|
10天前
|
存储 人工智能 自然语言处理
“OS Copilot”的操作系统辅助软件
【10月更文挑战第7天】随着AI技术的发展,"OS Copilot"作为一款操作系统辅助软件,通过智能命令建议、代码片段生成、文件管理助手及任务自动化等功能,极大提升了用户的工作效率,无论是日常办公还是专业开发都提供了强有力的支持。其简洁的安装流程、友好的用户界面和强大的搜索能力,使得这款软件成为提升生产力的得力助手。
20 2
|
15天前
|
消息中间件 算法 Linux
深入理解操作系统:进程管理与调度
【10月更文挑战第2天】本文将带你进入操作系统的核心领域之一——进程管理与调度。我们将从进程的基本概念出发,探讨进程的生命周期、状态转换以及进程间通信机制。文章还将介绍现代操作系统中常见的进程调度算法,并通过实际代码示例,展示如何在Linux系统中实现简单的进程创建和管理。无论你是操作系统的初学者还是有一定基础的开发者,这篇文章都将为你提供新的视角和深入的理解。
|
16天前
|
缓存 算法 调度
深入浅出操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅。我们将从进程管理的基本概念出发,逐步深入到内存管理的复杂世界,最终探索如何通过实践技巧来优化系统性能。文章将结合理论与实践,通过代码示例,帮助读者更好地理解操作系统的核心机制及其在日常技术工作中的重要性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往操作系统深层次理解的大门。
|
8天前
|
算法 Unix Linux
深入理解操作系统:进程管理与调度策略
【10月更文挑战第9天】本文将带你进入操作系统的核心,探索进程管理的奥秘。我们将从基础的概念出发,逐步深入到进程的创建、调度和同步等关键机制。通过理论与实际代码示例的结合,你将获得对操作系统中进程管理更深层次的理解和应用能力。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供新的视角和知识,让你在操作系统的学习之旅上更进一步。
|
12天前
|
算法 调度 开发者
操作系统的心脏:深入理解进程调度
本文将探讨操作系统中至关重要的部分——进程调度。进程调度负责管理计算机的CPU时间分配,确保多任务环境中每个进程都能公平地获得处理资源。通过深入分析不同的调度算法,如先来先服务(FCFS)、短作业优先(SJF)和优先级调度,本文揭示了它们的优势、缺陷及适用场景。我们还将讨论现代操作系统如何实现这些算法,并评估多级反馈队列等高级调度策略如何提高系统效率。无论是开发者设计更高效的应用程序,还是用户优化自己的使用体验,了解进程调度的基本原理和实践应用都是不可或缺的一环。