【DSW Gallery】Gbdt-LR模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: GBDT+LR模型是由Facebook于2014年提出。该模型利用GBDT自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当做LR模型的输入,来产生最后的预测结果。该模型能够综合利用用户、物品和上下文等多种不同的特征,生成较为全面的推荐,在CTR点击率预估场景下使用较为广泛。

直接使用

请打开Gbdt-LR模型,并点击右上角 “ 在DSW中打开” 。

image.png


Gbdt + LR 一体化模型训练及服务部署

GBDT+LR模型是由Facebook于2014年提出。该模型利用GBDT自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当做LR模型的输入,来产生最后的预测结果。该模型能够综合利用用户、物品和上下文等多种不同的特征,生成较为全面的推荐,在CTR点击率预估场景下使用较为广泛。
本文将介绍如何基于DSW使用Alink快速的构建 Gbdt+LR 模型,并且会介绍如何方便的将建立的模型部署成服务。

运行环境要求

1. PAI-DSW 官方镜像中默认已经安装了 PyAlink,内存要求 4G 及以上。
2. 本 Notebook 的内容可以直接运行查看,不需要准备任何其他文件。
from pyalink.alink import *
useLocalEnv(2)
Use one of the following commands to start using PyAlink:
 - useLocalEnv(parallelism, flinkHome=None, config=None): run PyAlink scripts locally.
 - useRemoteEnv(host, port, parallelism, flinkHome=None, localIp="localhost", config=None): run PyAlink scripts on a Flink cluster.
 - getMLEnv(): run PyAlink scripts as PyFlink scripts, support 'flink run -py xxx.py'.
Call resetEnv() to reset environment and switch to another.
JVM listening on 127.0.0.1:57792
MLEnv(benv=<pyflink.dataset.execution_environment.ExecutionEnvironment object at 0x7fb455ca3950>, btenv=<pyflink.table.table_environment.BatchTableEnvironment object at 0x7fb455ca3d10>, senv=<pyflink.datastream.stream_execution_environment.StreamExecutionEnvironment object at 0x7fb455ca3e90>, stenv=<pyflink.table.table_environment.StreamTableEnvironment object at 0x7fb455cc7c10>)

扩展到更大规模的数据

在这个示例中,我们使用 useLocalEnv 在本地(也就是 DSW 的 container 内)运行 Alink 作业,使用多线程的方式模拟分布式计算。

对于更大规模的数据,可以使用 usePAIEnv 向大规模集群提交作业,详细使用可以通过 help(usePAIEnv) 查看。

数据准备

Adult 数据来源 https://archive.ics.uci.edu/ml/datasets/Adult

算法相关文档:

Adult数据集(即“人口普查收入”数据集),由美国人口普查数据集库 抽取而来,其中共包含48842条记录,年收入大于50k美元的占比23.93%,年收入小于50k美元的占比76.07%,并且已经划分为训练数据32561条和测试数据16281条。 该数据集类变量为年收入是否超过50k美元,属性变量包括年龄、工种、学历、职业等 14类重要信息,其中有8类属于类别离散型变量,另外6类属于数值连续型变量。该数据集是一个分类数据集,用来预测年收入是否超过50k美元。

PATH = "https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/"
TRAIN_FILE = "adult_train.csv"
TEST_FILE = "adult_test.csv"
SCHEMA_STRING = "age bigint, workclass string, fnlwgt bigint, education string, education_num bigint,"\
    + " marital_status string, occupation string, relationship string, race string, sex string, "\
    + "capital_gain bigint, capital_loss bigint, hours_per_week bigint, native_country string, label string"
trainData = CsvSourceBatchOp() \
        .setFilePath(PATH + TRAIN_FILE) \
        .setFieldDelimiter(",") \
        .setSchemaStr(SCHEMA_STRING)
testData = CsvSourceBatchOp() \
        .setFilePath(PATH + TEST_FILE) \
        .setFieldDelimiter(",") \
        .setSchemaStr(SCHEMA_STRING)
trainData.lazyPrint(5)
BatchOperator.execute()
age workclass fnlwgt education education_num marital_status occupation relationship race sex capital_gain capital_loss hours_per_week native_country label
0 51 Private 166934 HS-grad 9 Married-civ-spouse Machine-op-inspct Husband White Male 0 0 40 United-States >50K
1 80 Self-emp-not-inc 26865 7th-8th 4 Never-married Farming-fishing Unmarried White Male 0 0 20 United-States <=50K
2 24 Private 227594 Some-college 10 Never-married Sales Own-child White Female 0 0 20 United-States <=50K
3 50 Private 93690 HS-grad 9 Married-civ-spouse Transport-moving Husband White Male 0 0 40 United-States >50K
4 35 Local-gov 226311 Some-college 10 Divorced Adm-clerical Own-child White Female 0 0 38 United-States <=50K

训练模型

算法相关文档:

我们通过将 GbdtEncoder 和 LR 这两个算子放到一个Pipeline的方式完成模型的一体化训练。这里是用GbdtEncoder对输入的数据进行编码,并将编码的结果输送给LR进行训练。最终我们得到一个pipeline model,这个模型可以用来对数据进行推理,也可以部署成服务。

featureCols = ["age", "fnlwgt", "education_num", "capital_gain",
            "capital_loss", "hours_per_week", "workclass", "education", "marital_status", "occupation",
            "relationship", "race", "sex", "native_country"]
numericalCols = ["age", "fnlwgt", "education_num", "capital_gain",
            "capital_loss", "hours_per_week"]
label = "label"
vecCol = "vec"
gbdtLrPipe = Pipeline() \
    .add(
        GbdtEncoder()\
            .setLabelCol(label)\
            .setFeatureCols(featureCols)\
            .setReservedCols([label])\
            .setPredictionCol(vecCol))\
    .add(
        LogisticRegression() \
            .setVectorCol(vecCol) \
            .setLabelCol(label) \
            .setReservedCols([label]) \
            .setPredictionDetailCol("detail") \
            .setPredictionCol("pred"))
model = gbdtLrPipe.fit(trainData)

模型评估

算法相关文档:

模型评估阶段,我们先试用上面训练好的模型对testData进行推理,然后用评估组件EvalBinaryClassBatchOp对推理结果进行评估,最后使用JsonValueBatchOp组件完成评估结果的抽取。

result = model.transform(testData)
EvalBinaryClassBatchOp() \
    .setPredictionDetailCol("detail").setLabelCol(label).linkFrom(result) \
    .link(JsonValueBatchOp().setSelectedCol("Data") \
        .setReservedCols([]) \
        .setOutputCols(["Accuracy", "AUC", "ConfusionMatrix"]) \
        .setJsonPath(["$.Accuracy", "$.AUC", "ConfusionMatrix"])).print()
Accuracy AUC ConfusionMatrix
0 0.847 0.89727 [[2432,1077],[1414,11358]]

模型写出

算法相关文档:

模型写出阶段,我们使用AkSinkBatchOp将模型写出到文件系统,这里的文件系统可以是本地文件系统(如代码所示),也可以时网络文件系统(比如OSS),可以通过代码:

 fs = OssFileSystem("3.4.1", "oss-cn-hangzhou-zmf.aliyuncs.com", "name", "************", "**********")
  filePath = FilePath("/model/gbdt_lr_model.ak", fs)

完成网络文件系统路径的构建,将这个路径以参数的方式塞给AkSinkBatchOp组件:

  AkSinkBatchOp().setFilePath(filePath).setOverwriteSink(True)

便可以完成将模型写出待网络文件系统的目的。

modelData = model.save();
filePath = "/tmp/gbdt_lr_model.ak"
# 可以将模型文件写出到OSS,这样可以直接部署到EAS,需要一个OSS的idkey。此处直接写出到/tmp 目录下
# fs = OssFileSystem("3.4.1", "oss-cn-hangzhou-zmf.aliyuncs.com", "name", "************", "**********")
# filePath = FilePath("/model/gbdt_lr_model.ak", fs)
modelData.link(AkSinkBatchOp().setFilePath(filePath).setOverwriteSink(True));
BatchOperator.execute();

加载模型并推理

这里加载模型的路径和模型写出时一样,可以是本地文件系统(如代码所示),也可以时网络文件系统(比如OSS)。

model = PipelineModel.load(filePath)
result = model.transform(testData).lazyPrint(5)
BatchOperator.execute()
label pred detail
0 <=50K <=50K {"<=50K":"0.9989905627837132",">50K":"0.0010094372162867682"}
1 <=50K <=50K {"<=50K":"0.9998243380029957",">50K":"1.7566199700425056E-4"}
2 <=50K <=50K {"<=50K":"0.9876843617629835",">50K":"0.012315638237016535"}
3 <=50K <=50K {"<=50K":"0.9993700815313991",">50K":"6.299184686009429E-4"}
4 <=50K <=50K {"<=50K":"0.9981436143261604",">50K":"0.0018563856738396112"}

模型部署

模型部署可以使用命令行部署:

!./eascmd64 -i {EAS AccessKeyId} -k {EAS AccessKeySecret} -e pai-eas.cn-beijing.aliyuncs.com create config.json

也可以通过阿里云PAI的交互界面,通过填写若干参数,一键部署,具体细节可以参见文档:

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
7月前
|
人工智能 自然语言处理 Java
一文带你彻底搞清楚通义灵码 2.0 下的 AI 程序员的智能化编码
本文介绍如何使用通义灵码整合的deepseek-v3大模型,体验AI程序员2.0的功能。通过升级VsCode插件、切换大模型,演示了AI生成C语言汉诺塔代码、解释代码、修改输出语句及修复中文乱码Bug的过程。最终代码展示了完整的汉诺塔实现,包括UTF-8编码设置和字体调整,确保中文显示正常。跟随本文,轻松体验AI编程助手的强大功能!
301 1
|
12月前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
传感器 PyTorch 数据处理
流式数据处理:DataLoader 在实时数据流中的作用
【8月更文第29天】在许多现代应用中,数据不再是以静态文件的形式存在,而是以持续生成的流形式出现。例如,传感器数据、网络日志、社交媒体更新等都是典型的实时数据流。对于这些动态变化的数据,传统的批处理方式可能无法满足低延迟和高吞吐量的要求。因此,开发能够处理实时数据流的系统变得尤为重要。
690 1
BERT+PET方式模型训练(一)
• 本项目中完成BERT+PET模型搭建、训练及应用的步骤如下(注意:因为本项目中使用的是BERT预训练模型,所以直接加载即可,无需重复搭建模型架构): • 一、实现模型工具类函数 • 二、实现模型训练函数,验证函数 • 三、实现模型预测函数
|
机器学习/深度学习 测试技术 TensorFlow
ModelScope模型使用与EAS部署调用
本文以魔搭数据的模型为例,演示在DSW实例中如何快速调用模型,然后通过Python SDK将模型部署到阿里云PAI EAS服务,并演示使用EAS SDK实现对服务的快速调用,重点针对官方关于EAS模型上线后示例代码无法正常调通部分进行了补充。
427 2
|
缓存 Java 数据库连接
提高检索效率的利器--Mybatis 的一级缓存和二级缓存执行顺序
提高检索效率的利器--Mybatis 的一级缓存和二级缓存执行顺序
356 0
|
机器学习/深度学习 算法 TensorFlow
机器学习框架教程:介绍一些流行的机器学习框架(如Scikit-learn、XGBoost等)
机器学习框架教程:介绍一些流行的机器学习框架(如Scikit-learn、XGBoost等)
1652 0
|
机器学习/深度学习 自然语言处理 算法
NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法
NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法
NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法
|
机器学习/深度学习 存储 运维
基于可变自动编码器(VAE)的生成建模,理解可变自动编码器背后的原理
基于可变自动编码器(VAE)的生成建模,理解可变自动编码器背后的原理
499 0
基于可变自动编码器(VAE)的生成建模,理解可变自动编码器背后的原理
|
机器学习/深度学习 前端开发 算法
阿里云机器学习PAI发布基于HLO的全自动分布式系统 TePDist,并宣布开源!
阿里云PAI发布基于HLO的全自动分布式系统 TePDist正式开源!