[python] 深度学习基础------人工神经网络实现鸢尾花分类(五)

简介: 本文主要写人工神经网络实现鸢尾花分类代码部分使用的是Kaggle: Your Machine Learning and Data Science Community在线编译器本代码属于自己造螺丝类,写的很细,没用神经网络不必要的函数即相关模块。相对较为复杂。下篇文章会写道利用模块和自带函数实现鸢尾花分类。相对简单很多。

鸢尾花数据集(Iris)



image.png


主要分为六大块



导入包-->准备数据-->搭建网络-->参数优化-->测试效果-->可视化


导入所需模块


# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np


准备数据


数据集读入

# 导入数据,分别为读入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target


数据集乱序

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)


生成训练集和测试集(即 x_train / y_train)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)


配成 (输入特征,标签) 对,每次读入一小撮(batch)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)


搭建网络


定义神经网路中所有可训练参数

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1))
lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc准确率记录在此列表中,为后续画acc曲线提供数据
epoch = 1000  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和


参数优化


嵌套循环迭代,with结构更新参数,显示当前loss

# 训练部分 y = w*x+ b ,利用(x,y)反推·w,b
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算   随机取w,b y=w*x+b的预测y值
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy 实际y值
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2) 预测y值与实际y值的偏差
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1]) #利用loss计算偏差
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad   利用偏差修正w,b
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新
    # 每个epoch,打印loss信息
    #print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备


测试效果


计算当前参数前向传播后的准确率,显示当前acc


# 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1 
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)


acc / loss可视化


plt.figure(figsize=(10, 10))
plt.title('Loss and Acc')
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss and Acc')  # y轴变量名称
plt.yticks([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1])
# 绘制 loss 曲线
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
# 绘制 Accuracy 曲线
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像


输出结果

image.png

相关文章
|
6天前
|
机器学习/深度学习 TensorFlow 调度
使用Python实现深度学习模型:智能能源消耗预测与管理
使用Python实现深度学习模型:智能能源消耗预测与管理
75 30
|
3天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
11 1
|
4天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型:智能天气预测与气候分析
使用Python实现深度学习模型:智能天气预测与气候分析
65 3
|
3天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型:智能海洋监测与保护
使用Python实现深度学习模型:智能海洋监测与保护
19 1
|
4天前
|
机器学习/深度学习 算法 数据挖掘
【深度学习】经典的深度学习模型-02 ImageNet夺冠之作: 神经网络AlexNet
【深度学习】经典的深度学习模型-02 ImageNet夺冠之作: 神经网络AlexNet
10 2
|
4天前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
9 0
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第10天】深入理解深度学习中的卷积神经网络(CNN)
47 0
|
9天前
|
存储 程序员 开发者
Python编程基础:从入门到实践
【10月更文挑战第8天】在本文中,我们将一起探索Python编程的奇妙世界。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的信息。我们将从Python的基本概念开始,然后逐步深入到更复杂的主题,如数据结构、函数和类。最后,我们将通过一些实际的代码示例来巩固我们的知识。让我们一起开始这段Python编程之旅吧!
|
3天前
|
设计模式 开发者 Python
Python编程中的设计模式:从入门到精通####
【10月更文挑战第14天】 本文旨在为Python开发者提供一个关于设计模式的全面指南,通过深入浅出的方式解析常见的设计模式,帮助读者在实际项目中灵活运用这些模式以提升代码质量和可维护性。文章首先概述了设计模式的基本概念和重要性,接着逐一介绍了几种常用的设计模式,并通过具体的Python代码示例展示了它们的实际应用。无论您是Python初学者还是经验丰富的开发者,都能从本文中获得有价值的见解和实用的技巧。 ####