时间序列数据的存储和计算 - 开源时序数据库解析(一)

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储OSS,敏感数据保护2.0 200GB 1年
文件存储 NAS,50GB 3个月
简介: 开源时序数据库   如图是17年6月在db-engines上时序数据库的排名,我会挑选开源的、分布式的时序数据库做详细的解析。前十的排名中,RRD是一个老牌的单机存储引擎,Graphite底层是Whisper,可以认为是一个优化的更强大的RRD数据库。

开源时序数据库

image

  如图是17年6月在db-engines上时序数据库的排名,我会挑选开源的、分布式的时序数据库做详细的解析。前十的排名中,RRD是一个老牌的单机存储引擎,Graphite底层是Whisper,可以认为是一个优化的更强大的RRD数据库。kdb+、eXtremeDB和Axibase都未开源,不做解析。InfluxDB开源版和Prometheus的底层都是基于levelDB自研的单机的存储引擎,InfluxDB的商业版支持分布式,Prometheus的roadmap上也规划了分布式存储引擎的支持计划。
  综合看下来,我会选择OpenTSDB、KairosDB和InfluxDB做一个详细的解析。我对OpenTSDB比较熟悉,研究过它的源码,所以对OpenTSDB会描述的格外详细,而对其他时序数据库了解的没那么深入,如果有描述错的地方,欢迎指正。

OpenTSDB

  OpenTSDB是一个分布式、可伸缩的时序数据库,支持高达每秒百万级的写入能力,支持毫秒级精度的数据存储,不需要降精度也可以永久保存数据。其优越的写性能和存储能力,得益于其底层依赖的HBase,HBase采用LSM树结构存储引擎加上分布式的架构,提供了优越的写入能力,底层依赖的完全水平扩展的HDFS提供了优越的存储能力。OpenTSDB对HBase深度依赖,并且根据HBase底层存储结构的特性,做了很多巧妙的优化。关于存储的优化,我在这篇文章中有详细的解析。在最新的版本中,还扩展了对BigTable和Cassandra的支持。

架构

image
  如图是OpenTSDB的架构,核心组成部分就是TSD和HBase。TSD是一组无状态的节点,可以任意的扩展,除了依赖HBase外没有其他的依赖。TSD对外暴露HTTP和Telnet的接口,支持数据的写入和查询。TSD本身的部署和运维是很简单的,得益于它无状态的设计,不过HBase的运维就没那么简单了,这也是扩展支持BigTable和Cassandra的原因之一吧。

数据模型

  OpenTSDB采用按指标建模的方式,一个数据点会包含以下组成部分:

  • metric:时序数据指标的名称,例如sys.cpu.user,stock.quote等。
  • timestamp:秒级或毫秒级的Unix时间戳,代表该时间点的具体时间。
  • tags:一个或多个标签,也就是描述主体的不同的维度。Tag由TagKey和TagValue组成,TagKey就是维度,TagValue就是该维度的值。
  • value:该指标的值,目前只支持数值类型的值。

存储模型

  OpenTSDB底层存储的优化思想,可以参考这篇文章,简单总结就是以下这几个关键的优化思路:

  • 对数据的优化:为Metric、TagKey和TagValue分配UniqueID,建立原始值与UniqueID的索引,数据表存储Metric、TagKey和TagValue对应的UniqueID而不是原始值。
  • 对KeyValue数的优化:如果对HBase底层存储模型十分了解的话,就知道行中的每一列在存储时对应一个KeyValue,减少行数和列数,能极大的节省存储空间以及提升查询效率。
  • 对查询的优化:利用HBase的Server Side Filter来优化多维查询,利用Pre-aggregation和Rollup来优化GroupBy和降精度查询。

UIDTable

  接下来看一下OpenTSDB在HBase上的几个关键的表结构的设计,首先是tsdb-uid表,结构如下:

image

Metric、TagKey和TagValue都会被分配一个相同的固定长度的UniqueID,默认是三个字节。tsdb-uid表使用两个ColumnFamily,存储了Metric、TagKey和TagValue与UniqueID的映射和反向映射,总共是6个Map的数据。

从图中的例子可以解读出:

  • TagKey为'host',对应的UniqueID为'001'
  • TagValue为'static',对应的UniqueId为'001'
  • Metric为'proc.loadavg.1m',对应的UniqueID为'052'

  为每一个Metric、TagKey和TagValue都分配UniqueID的好处,一是大大降低了存储空间和传输数据量,每个值都只需要3个字节就可以表示,这个压缩率是很客观的;二是采用固定长度的字节,可以很方便的从row key中解析出所需要的值,并且能够大大减少Java堆内的内存占用(bytes相比String能节省很多的内存占用),降低GC的压力。
  不过采用固定字节的UID编码后,对于UID的个数是有上限要求的,3个字节最多只允许有16777216个不同的值,不过在大部分场景下都是够用的。当然这个长度是可以调整的,不过不支持动态更改。

DataTable

第二张关键的表是数据表,结构如下:

image

  该表中,同一个小时内的数据会存储在同一行,行中的每一列代表一个数据点。如果是秒级精度,那一行最多会有3600个点,如果是毫秒级精度,那一行最多会有3600000个点。
  这张表设计的精妙之处在于row key和qualifier(列名)的设计,以及对整行数据的compaction策略。row key格式为:

<metric><timestamp><tagk1><tagv1><tagk2>tagv2>...<tagkn><tagvn>

  其中metric、tagk和tagv都是用uid来表示,由于uid固定字节长度的特性,所以在解析row key的时候,可以很方便的通过字节偏移来提取对应的值。Qualifier的取值为数据点的时间戳在这个小时的时间偏差,例如如果你是秒级精度数据,第30秒的数据对应的时间偏差就是30,所以列名取值就是30。列名采用时间偏差值的好处,主要在于能大大节省存储空间,秒级精度的数据只要占用2个字节,毫秒精度的数据只要占用4个字节,而若存储完整时间戳则要6个字节。整行数据写入后,OpenTSDB还会采取compaction的策略,将一行内的所有列合并成一列,这样做的主要目的是减少KeyValue数目。

查询优化

  HBase仅提供简单的查询操作,包括单行查询和范围查询。单行查询必须提供完整的RowKey,范围查询必须提供RowKey的范围,扫描获得该范围下的所有数据。通常来说,单行查询的速度是很快的,而范围查询则是取决于扫描范围的大小,扫描个几千几万行问题不大,但是若扫描个十万上百万行,那读取的延迟就会高很多。
  OpenTSDB提供丰富的查询功能,支持任意TagKey上的过滤,支持GroupBy以及降精度。TagKey的过滤属于查询的一部分,GroupBy和降精度属于对查询后的结果的计算部分。在查询条件中,主要的参数会包括:metric名称、tag key过滤条件以及时间范围。上面一章中指出,数据表的rowkey的格式为:<metric><timestamp><tagk1><tagv1><tagk2>tagv2>...<tagkn><tagvn>,从查询的参数上可以看到,metric名称和时间范围确定的话,我们至少能确定row key的一个扫描范围。但是这个扫描范围,会把包含相同metric名称和时间范围内的所有的tag key的组合全部查询出来,如果你的tag key的组合有很多,那你的扫描范围是不可控的,可能会很大,这样查询的效率基本是不能接受的。

我们具体看一下OpenTSDB对查询的优化措施:

  • Server side filter
    HBase提供了丰富和可扩展的filter,filter的工作原理是在server端扫描得到数据后,先经过filter的过滤后再将结果返回给客户端。Server side filter的优化策略无法减少扫描的数据量,但是可以大大减少传输的数据量。OpenTSDB会将某些条件的tag key filter转换为底层HBase的server side filter,不过该优化带来的效果有限,因为影响查询最关键的因素还是底层范围扫描的效率而不是传输的效率。
  • 减少范围查询内扫描的数据量
    要想真正提高查询效率,还是得从根本上减少范围扫描的数据量。注意这里不是减小查询的范围,而是减少该范围内扫描的数据量。这里用到了HBase一个很关键的filter,即FuzzyRowFilter,FuzzyRowFilter能够根据指定的条件,在执行范围扫描时,动态的跳过一定数据量。但不是所有OpenTSDB提供的查询条件都能够应用该优化,需要符合一定的条件,具体要符合哪些条件就不在这里说明了,有兴趣的可以去了解下FuzzyRowFilter的原理。
  • 范围查询优化成单行查询
    这个优化相比上一条,更加的极端。优化思路非常好理解,如果我能够知道要查询的所有数据对应的row key,那就不需要范围扫描了,而是单行查询就行了。这里也不是所有OpenTSDB提供的查询条件都能够应用该优化,同样需要符合一定的条件。单行查询要求给定确定的row key,而数据表中row key的组成部分包括metric名称、timestamp以及tags,metric名称和timestamp是能够确定的,如果tags也能够确定,那我们就能拼出完整的row key。所以很简单,如果要能够应用此优化,你必须提供所有tag key对应的tag value才行。

  以上就是OpenTSDB对HBase查询的一些优化措施,但是除了查询,对查询后的数据还需要进行GroupBy和降精度。GroupBy和降精度的计算开销也是非常可观的,取决于查询后的结果的数量级。对GroupBy和降精度的计算的优化,几乎所有的时序数据库都采用了同样的优化措施,那就是pre-aggregation和auto-rollup。思路就是预先进行计算,而不是查询后计算。不过OpenTSDB在已发布的最新版本中,还未支持pre-aggregation和rollup。而在开发中的2.4版本中,也只提供了半吊子的方案,它只提供了一个新的接口支持将pre-aggregation和rollup的结果进行写入,但是对数据的pre-aggregation和rollup的计算还需要用户自己在外层实现。

总结

  OpenTSDB的优势在于数据的写入和存储能力,得益于底层依赖的HBase所提供的能力。劣势在于数据查询和分析的能力上的不足,虽然在查询上已经做了很多的优化,但是不是所有的查询场景都能适用。可以说,OpenTSDB在TagValue过滤查询优化,是这次要对比的几个时序数据库中,优化的最差的。在GroupBy和Downsampling的查询上,也未提供Pre-aggregation和Auto-rollup的支持。不过在功能丰富程度上,OpenTSDB的API是支持最丰富的,这也让OpenTSDB的API成为了一个标杆。

欢迎扫码加入钉钉群与我交流!
_

目录
打赏
0
0
0
3
7092
分享
相关文章
MyEMS开源系统安装之数据库
本文详细讲解MyEMS的安装步骤,重点介绍数据库架构与脚本部署。MyEMS支持MySQL 8.0、MariaDB 10.5及SingleStore 7.0等数据库服务器。通过命令行或客户端工具执行SQL脚本完成安装,包括多个数据库(如myems_billing_db、myems_energy_db等)。此外,提供解决常见问题的方法,如“用户拒绝访问”、“COLLATE设置”和“MAX_ALLOWED_PACKET错误”。注意,不建议在生产环境中将数据库安装于Docker容器内。
71 1
PolarDB开源数据库进阶课17 集成数据湖功能
本文介绍了如何在PolarDB数据库中接入pg_duckdb、pg_mooncake插件以支持数据湖功能, 可以读写对象存储的远程数据, 支持csv, parquet等格式, 支持delta等框架, 并显著提升OLAP性能。
287 2
PolarDB开源:云原生数据库的架构革命
本文围绕开源核心价值、社区运营实践和技术演进路线展开。首先解读存算分离架构的三大突破,包括基于RDMA的分布式存储、计算节点扩展及存储池扩容机制,并强调与MySQL的高兼容性。其次分享阿里巴巴开源治理模式,涵盖技术决策、版本发布和贡献者成长体系,同时展示企业应用案例。最后展望技术路线图,如3.0版本的多写多读架构、智能调优引擎等特性,以及开发者生态建设举措,推荐使用PolarDB-Operator实现高效部署。
197 3
PolarDB开源数据库入门教程
PolarDB是阿里云推出的云原生数据库,基于PostgreSQL、MySQL和Oracle引擎构建,具备高性能、高扩展性和高可用性。其开源版采用计算与存储分离架构,支持快速弹性扩展和100%兼容PostgreSQL/MySQL。本文介绍了PolarDB的安装方法(Docker部署或源码编译)、基本使用(连接数据库、创建表等)及高级特性(计算节点扩展、存储自动扩容、并行查询等)。同时提供了性能优化建议和监控维护方法,帮助用户在生产环境中高效使用PolarDB。
961 21
PolarDB开源:云原生数据库的新篇章
阿里云自研的云原生数据库PolarDB于2023年5月正式开源,采用“存储计算分离”架构,具备高性能、高可用及全面兼容性。其开源版本提供企业级数据库解决方案,支持MySQL、PostgreSQL和Oracle语法,适用于高并发OLTP、核心业务系统等场景。PolarDB通过开放治理与开发者工具构建完整生态,并展望更丰富的插件功能与AI集成,为中国云原生数据库技术发展贡献重要力量。
348 17
16.1k star! 只需要DDL就能一键生成数据库关系图!开源神器ChartDB让你的数据结构"看得见"
ChartDB是一款开源的数据库可视化神器,通过一句智能查询就能自动生成专业的数据库关系图。无需安装客户端、不用暴露数据库密码,打开网页就能完成从数据建模到迁移的全流程操作,堪称开发者的"数据库透视镜"。
637 67
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
101 1
PolarDB开源数据库进阶课18 通过pg_bulkload适配pfs实现批量导入提速
本文介绍了如何修改 `pg_bulkload` 工具以适配 PolarDB 的 PFS(Polar File System),从而加速批量导入数据。实验环境依赖于 Docker 容器中的 loop 设备模拟共享存储。通过对 `writer_direct.c` 文件的修改,替换了一些标准文件操作接口为 PFS 对应接口,实现了对 PolarDB 15 版本的支持。测试结果显示,使用 `pg_bulkload` 导入 1000 万条数据的速度是 COPY 命令的三倍多。此外,文章还提供了详细的步骤和代码示例,帮助读者理解和实践这一过程。
187 0
PolarDB开源数据库进阶课16 接入PostGIS全功能及应用举例
本文介绍了如何在PolarDB数据库中接入PostGIS插件全功能,实现地理空间数据处理。此外,文章还提供了使用PostGIS生成泰森多边形(Voronoi diagram)的具体示例,帮助用户理解其应用场景及操作方法。
210 1

云存储

+关注

推荐镜像

更多
  • DNS
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等

    登录插画

    登录以查看您的控制台资源

    管理云资源
    状态一览
    快捷访问