【算法刷题】—7.30DP动态规划的应用

简介: ✨今日算法一题网格中的最小路径代价

✨今日算法一题


网格中的最小路径代价


文章目录



网格中的最小路径代价


题目描述


思路详解


我们仔细观察题目,这是一道典型的dp题目。

定义状态:dp[i][j]表示以gril[i][j]结尾的路径的的最小值

状态转移:dp[i][j] = Math.min(dp[i - 1][k] + moveCost[grid[i - 1][k]][j] + grid[i][j],dp[i][j]);

dp[i - 1][k] 从dp[i-1][k]到dp[i][j]

moveCost[grid[i - 1][k]][j] 从dp[i-1][k]到dp[i][j]的路径的值

grid[i][j] 该点的值


代码与结果

class Solution {
    public int minPathCost(int[][] grid, int[][] moveCost) {
    int n = grid.length, m = grid[0].length;
    int[][] dp = new int[n][m];//dp[i][j]表示以gril[i][j]结尾的路径的最小值
    int ans = Integer.MAX_VALUE;
    for (int i = 0; i < dp.length; i++) {
      Arrays.fill(dp[i], Integer.MAX_VALUE);
    }
    for (int j = 0; j < m; j++) {
      dp[0][j] = grid[0][j];
    }
    for (int i = 1; i < n; i++) {
      for (int j = 0; j < m; j++) {
        for (int k = 0; k < m; k++) {
          /*
           * dp[i - 1][k] 从dp[i-1][k]到dp[i][j]
           * moveCost[grid[i - 1][k]][j] 从dp[i-1][k]到dp[i][j]的路径的值
           * grid[i][j]  该点的值
           */
          dp[i][j] = Math.min(dp[i - 1][k] + moveCost[grid[i - 1][k]][j] + grid[i][j],
             dp[i][j]);
        }
      }
    }
    n--;//为了方便枚举终点的路径最小值
    for (int j = 0; j < m; j++) {
      ans = Math.min(ans, dp[n][j]);//寻找达到尾部的最小值
    }
    return ans;
  }
}

✨总结


dp动态规划算法,也是比较难的一类算法。难点在于状态转移方程的寻找。这个只有多多做题经历多练就很熟悉了。加油!!!

相关文章
|
2月前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
95 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
29天前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
48 5
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
77 1
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68