【java刷算法】牛客—剑指offer4DFS与BFS两种思路的碰撞,一起来练习吧

简介: ✨今日二剑JZ12 矩阵中的路径JZ13 机器人的运动范围

✨今日二剑


JZ12 矩阵中的路径

JZ13 机器人的运动范围


文章目录

✨今日二剑

JZ12 矩阵中的路径

JZ13 机器人的运动范围

JZ12 矩阵中的路径

题目描述

思路详解

代码与结果

JZ13 机器人的运动范围

题目描述

思路详解

DFS(深度优先搜索)

BFS(广度优先搜索)

代码与结果

DFS(深度优先搜索)

BFS(广度优先搜索)

✨总结

文章目录

JZ12 矩阵中的路径

JZ13 机器人的运动范围


JZ12 矩阵中的路径



题目描述

思路详解


本题我们用回溯算法解决。

我们看到他是从矩形中的一个点开始往他的上下左右四个方向查找,这个点可以是矩形中的任何一个点,就是遍历矩形所有的点,然后从这个点开始往他的4个方向走,因为是二维数组,所以有两个for循环。

我们接下来写一个dfs方法,对其控制判断和方向的转变。

详细见注释哦!!!


代码与结果

import java.util.*;
public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param matrix char字符型二维数组 
     * @param word string字符串 
     * @return bool布尔型
     */
   public boolean hasPath(char[][] matrix, String word) {
    char[] words = word.toCharArray();
    for (int i = 0; i < matrix.length; i++) {
        for (int j = 0; j < matrix[0].length; j++) {
            //从[i,j]这个坐标开始查找
            if (dfs(matrix, words, i, j, 0))
                return true;
        }
    }
    return false;
}
boolean dfs(char[][] matrix, char[] word, int i, int j, int index) {
    //边界的判断,如果越界直接返回false。index表示的是查找到字符串word的第几个字符,
    //如果这个字符不等于matrix[i][j],说明验证这个坐标路径是走不通的,直接返回false
    if (i >= matrix.length || i < 0 || j >= matrix[0].length || j < 0 || matrix[i][j] != word[index])
        return false;
    //如果word的每个字符都查找完了,直接返回true
    if (index == word.length - 1)
        return true;
    //把当前坐标的值保存下来,为了在最后复原
    char tmp = matrix[i][j];
    //然后修改当前坐标的值
    matrix[i][j] = '.';
    //走递归,沿着当前坐标的上下左右4个方向查找
    boolean res = dfs(matrix, word, i + 1, j, index + 1)
            || dfs(matrix, word, i - 1, j, index + 1)
            || dfs(matrix, word, i, j + 1, index + 1)
            || dfs(matrix, word, i, j - 1, index + 1);
    //递归之后再把当前的坐标复原
    matrix[i][j] = tmp;
    return res;
}
}


JZ13 机器人的运动范围


题目描述


思路详解


本题是一个机器人从左上角开始,他可以沿着上下左右四个方向走,并且走到的每个格子坐标的数字和不大于k,问可以走多少个格子。那么就想到本题就有两种解法,DFS 和 BFS,下面都列出来大家看下效率和具体实现方法。


DFS(深度优先搜索)


根据题目得出,机器人不能往回走,并且每个格子还有一个进入的方向,那么机器人可以走的就只有3个方向。但是我们用的是DFS(深度优先搜索),就像不撞南墙不回头的牛一样。实际上只有向右,向下,两个方向。

我们试想一下,他会一直沿着一个方向走到不能走,然后回溯。那么这个时候回溯的时候我们在进行向下,向右,就可以达到所有的地方。

详解见代码哦!!!


BFS(广度优先搜索)


当然也可以用BFS(广度优先搜索),相比于DFS,BFS就比较灵活咯。

BFS不是一条道走下去,他会把离他最近的都访问一遍,访问完之后才开始访问第二近的……,直到访问完全部的。

BFS使用最好的一种数据结构就是使用队列,因为队列是先进先出,离他最近的访问完之后加入到队列中,最先入队的也是最先出队的。

具体代码与DFS相差不多,详见代码注释哦!!!


代码与结果


DFS(深度优先搜索)

public int movingCount(int threshold, int rows, int cols) {
    //临时变量visited记录格子是否被访问过
    boolean[][] visited = new boolean[rows][cols];
    return dfs(0, 0, rows, cols, threshold, visited);
}
public int dfs(int i, int j, int rows, int cols, int threshold, boolean[][] visited) {
    //i >= rows || j >= cols是边界条件的判断,threshold < sum(i, j)判断当前格子坐标是否
    // 满足条件,visited[i][j]判断这个格子是否被访问过
    if (i >= rows || j >= cols || threshold < sum(i, j) || visited[i][j])
        return 0;
    //标注这个格子被访问过
    visited[i][j] = true;
    //沿着当前格子的右边和下边继续访问
    return 1 + dfs(i + 1, j, rows, cols, threshold, visited) +
            dfs(i, j + 1, rows, cols, threshold, visited);
}
//计算两个坐标数字的和
private int sum(int i, int j) {
    int sum = 0;
    //计算坐标i所有数字的和
    while (i != 0) {
        sum += i % 10;
        i /= 10;
    }
    //计算坐标j所有数字的和
    while (j != 0) {
        sum += j % 10;
        j /= 10;
    }
    return sum;
}

BFS(广度优先搜索)

import java.util.LinkedList;
import java.util.Queue;
public class Solution {
    public int movingCount(int threshold, int rows, int cols) {
        //临时变量visited记录格子是否被访问过
        boolean[][] visited = new boolean[rows][cols];
        int res = 0;
        //创建一个队列,保存的是访问到的格子坐标,是个二维数组
        Queue<int[]> queue = new LinkedList<>();
        //从左上角坐标[0,0]点开始访问,add方法表示把坐标
        // 点加入到队列的队尾
        queue.add(new int[]{0, 0});
        while (queue.size() > 0) {
            //这里的poll()函数表示的是移除队列头部元素,因为队列
            // 是先进先出,从尾部添加,从头部移除
            int[] x = queue.poll();
            int i = x[0], j = x[1];
            //i >= rows || j >= cols是边界条件的判断,threshold < sum(i, j)判断当前格子坐标是否
            // 满足条件,visited[i][j]判断这个格子是否被访问过
            if (i >= rows || j >= cols || threshold < sum(i, j) || visited[i][j])
                continue;
            //标注这个格子被访问过
            visited[i][j] = true;
            res++;
            //把当前格子右边格子的坐标加入到队列中
            queue.add(new int[]{i + 1, j});
            //把当前格子下边格子的坐标加入到队列中
            queue.add(new int[]{i, j + 1});
        }
        return res;
    }
    //计算两个坐标数字的和
    private int sum(int i, int j) {
        int sum = 0;
        //计算坐标i所有数字的和
        while (i != 0) {
            sum += i % 10;
            i /= 10;
        }
        //计算坐标j所有数字的和
        while (j != 0) {
            sum += j % 10;
            j /= 10;
        }
        return sum;
    }
}


✨总结


本来今天要刷三题的,但是今天的DFS 和 BFS比较重要,就写的详细一点,也下去多练几题。

本题也是面试官最喜欢考的题型,代码不多却体现了两种不同的思路。

一起来多练习几遍吧,等你哦!!!



相关文章
|
5天前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
10天前
|
算法 Java
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
27 6
|
10天前
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
29 2
|
10天前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
25 1
|
10天前
|
存储 算法 Java
LeetCode经典算法题:预测赢家+香槟塔java解法
LeetCode经典算法题:预测赢家+香槟塔java解法
22 1
|
10天前
|
存储 算法 Java
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
LeetCode经典算法题:二叉树遍历(递归遍历+迭代遍历+层序遍历)以及线索二叉树java详解
29 0
|
10天前
|
算法 Java
LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
17 0
|
6天前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
5天前
|
机器学习/深度学习 算法 定位技术
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
11 3
|
6天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。

热门文章

最新文章