从数组的第 0 个位置开始跳,跳的距离小于等于数组上对应的数。求出跳到最后个位置需要的最短步数。比如上图中的第 0 个位置是 2,那么可以跳 1 个距离,或者 2 个距离,我们选择跳 1 个距离,就跳到了第 1 个位置,也就是 3 上。然后我们可以跳 1,2,3 个距离,我们选择跳 3 个距离,就直接到最后了。所以总共需要 2 步。
解法一 顺藤摸瓜
参考这里,leetCode 讨论里,大部分都是这个思路,贪婪算法,我们每次在可跳范围内选择可以使得跳的更远的位置。
如下图,开始的位置是 2,可跳的范围是橙色的。然后因为 3 可以跳的更远,所以跳到 3 的位置。
写代码的话,我们用 end 表示当前能跳的边界,对于上边第一个图的橙色 1,第二个图中就是橙色的 4,遍历数组的时候,到了边界,我们就重新更新新的边界。
publicintjump(int[] nums) { intend=0; intmaxPosition=0; intsteps=0; for(inti=0; i<nums.length-1; i++){ //找能跳的最远的maxPosition=Math.max(maxPosition, nums[i] +i); if( i==end){ //遇到边界,就更新边界,并且步数加一end=maxPosition; steps++; } } returnsteps; }
时间复杂度:O(n)。
空间复杂度:O(1)。
这里要注意一个细节,就是 for 循环中,i < nums.length - 1,少了末尾。因为开始的时候边界是第 0 个位置,steps 已经加 1 了。如下图,如果最后一步刚好跳到了末尾,此时 steps 其实不用加 1 了。如果是 i < nums.length,i 遍历到最后的时候,会进入 if 语句中,steps 会多加 1 。
总
刷这么多题,第一次遇到了贪心算法,每次找局部最优,最后达到全局最优,完美!