KOOM 浅析

简介: KOOM 浅析

KOOM 相比较 LeakCanary 和 Matrix 来说有点不同,后俩者由于 dump 的整个过程会影响到主进程,所以基本应用与线下监控,而 KOOM 提出了 fork dump 的概念,能在 dump 分析内存泄漏的时候而不影响到主进程的应用运行,所以,非常适合使用在线上监控。


所有的内存泄漏监控工具都离不开这三点:


  • 监控触发时机
  • dump 内存堆栈
  • 分析 hprof 文件

1、监控触发时机


LeakCanary 和 Matrix 都是在 Activity.onDestroy 时触发泄漏检测,KOOM 有点另辟蹊径,KOOM 是用阈值检测法来触发,我们来看下核心逻辑:


MonitorThread.class

class MonitorRunnable implements Runnable {
    ...
    @Override
    public void run() {
      if (stop) {
        return;
      }
      // 是否触发检测
      if (monitor.isTrigger()) {
        // 检测回调触发
        stop = monitorTriggerListener
            .onTrigger(monitor.monitorType(), monitor.getTriggerReason());
      }
      if (!stop) {
        // 间隔 5s 轮训检测
        handler.postDelayed(this, monitor.pollInterval());
      }
    }
  }
复制代码


MonitorThread 是一个利用 HandlerThread 不停在轮训监控当前是否触发检测,isTrigger 是关键所在


HeapMonitor.class

@Override
  public boolean isTrigger() {
    ...
  // ①、获取当前的内存状态
    HeapStatus heapStatus = currentHeapStatus();
  // ②、当前使用内存是否达到最大阈值,内存使用占比超过 95%
    if (heapStatus.isOverMaxThreshold) {
      // 已达到最大阀值,强制触发 trigger,防止后续出现大内存分配导致 OOM 进程 Crash,无法触发 trigger
      currentTimes = 0;
      return true;
    }
  // ③、当前使用内存是否达到触发条件,内存使用占比超过 80、85、90
    if (heapStatus.isOverThreshold) {
      // 默认是 true
      if (heapThreshold.ascending()) {
         // ④、此时记录的内存占用比上次记录的高、达到最大阈值
        if (lastHeapStatus == null || heapStatus.used >= lastHeapStatus.used || heapStatus.isOverMaxThreshold) {
          currentTimes++;
        } else {
          currentTimes = 0;
        }
      } else {
        currentTimes++;
      }
    } else {
      currentTimes = 0;
    }
    // 将本地记录进行缓存
    lastHeapStatus = heapStatus;
    // ⑤、记录的次数超过 3 次,则触发条件
    return currentTimes >= heapThreshold.overTimes();
  }
  private HeapStatus lastHeapStatus;
  private HeapStatus currentHeapStatus() {
    HeapStatus heapStatus = new HeapStatus();
    heapStatus.max = Runtime.getRuntime().maxMemory();
    heapStatus.used = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
    float heapInPercent = 100.0f * heapStatus.used / heapStatus.max;
    heapStatus.isOverThreshold = heapInPercent > heapThreshold.value();
    heapStatus.isOverMaxThreshold = heapInPercent > heapThreshold.maxValue();
    return heapStatus;
  }
复制代码


解释:


  • ①:currentHeapStatus 方法是获取当前的内存状态,主要收集了当前最大内存、已使用的内存、已使用内存的占比、已使用的内存占比是否超过阈值,已使用的内存占比是否超过最大阈值。
  • ②:当前已使用内存是否达到最大阈值,内存使用占比超过 95%(常量值,可配置),如果超过的话,则直接触发
  • ③:当前已使用内存占比是否触发到阈值,该阈值会根据机型内存来进行变更,具体看 KConstants.getDefaultPercentRation(常量值,可配置)
  • ④、如果本次记录的内存占比比上次记录的还要大,或是触发到了最大阈值,则记录一下次数
  • ⑤:记录的次数超过 3 次,则触发

对于第四点我开始是有点疑虑的,只有内存是在连续 3 次增长的时候才会迭代次数,并且我们的检测是轮训的 5s,如果在增长的次数刚好 2 次,gc 回收又让内存重新回跌,然后次数又会被重置,下次再又增长上来,又要从 0 开始记录次数,这种会不会漏检?但又思考再三,如果内存泄漏的话,内存的趋势肯定是增长状态的,只不过是时间问题,他并不像 crash 检测那样,需要很高的时效性。


2、dump 内存堆栈


Dump hprof是通过虚拟机提供的 API dumpHprofData 实现的,这个过程会 “冻结” 整个应用进程,造成数秒甚至数十秒内用户无法操作,这也是LeakCanary 无法线上部署的最主要原因,如果能将这一过程优化至用户无感知,将会给 OOM 治理带来很大的想象空间。


正如 KOOM 所说的,解决 dump 无感知会是非常大的想象空间,因为他可以部署到线上监控。


KOOM 使用 fork dump 操作,从当前主进程 fork 出一个子进程,由于 linux 的 copy-on-write 机制,子进程和父进程共享的是一块内存,那么我们就可以在子进程中进行 dump 堆栈,不影响主进程的运行。当然其中还是有很多的坑,这里不展开讲,可以查看快手的文章 解决 Dump hprof 冻结 app 部分


HeapDumpTrigger.class

public void doHeapDump(TriggerReason.DumpReason reason) {
    // 生成 dump 的 hprof 文件存储路径
    KHeapFile.getKHeapFile().buildFiles();
    ...
    // 开始 dump
    boolean res = heapDumper.dump(KHeapFile.getKHeapFile().hprof.path);
    ...
  }
复制代码


heapDumper 实现类有三个,我们只看 ForkJvmHeapDumper 类


ForkJvmHeapDumper

@Override
  public boolean dump(String path) {
    ...
    // 适配 Android 11 ,和下面流程差不多
    if (Build.VERSION.SDK_INT > Build.VERSION_CODES.Q) {
      return dumpHprofDataNative(path);
    }
    ...
    try {
      // ①、挂起主进程并 for 出子进程
      int pid = trySuspendVMThenFork();
      if (pid == 0) {
        // ②、子进程开始 dump hprof
        Debug.dumpHprofData(path);
        // 结束子进程
        exitProcess();
      } else {
        // ③、恢复挂起的主进程
        resumeVM();
        // ④、等待子进程的 dump
        dumpRes = waitDumping(pid);
      }
    } catch (IOException e) {
       e.printStackTrace();
    }
    return dumpRes;
  }
复制代码


解释:


  • ① : 调用 native 方法,挂起当前的主进程,并 for 出子进程,该挂起仅仅只是更改 ThreadList  变量的线程状态味 suspend,主要目的的欺骗子进程的 dump
  • ② : 子进程开始 dump hprof 文件
  • ③ : 恢复挂起的主进程,也是更改 ThreadList  变量状态
  • ④ : 等待子进程退出, 看到 issue #81 有人对这个等待过程提出了疑虑,作者也进行相应的解答,waitPid 只是暂停线程,而我们 dump 的过程是在 HandlerThread 进行的,所以并不影响主线程

dump 出的堆栈已存放到了指定 path 中,接下来只需要继续回到 doHeapDump 方法,做接下来的解析操作。


3、分析 hprof 文件


分析的回调有点长,就直接写类和方法好了:

  • KOOMInternal.onHeapDumped
  • HeapAnalysisTrigger.startTrack
  • HeapAnalysisTrigger.trigger
  • HeapAnalysisTrigger.doAnalysis
  • HeapAnalyzeService.runAnalysis : 启动一个 IntentService 服务
  • HeapAnalyzeService.doAnalyze
  • KHeapAnalyzer.analyze


KHeapAnalyzer.class

public boolean analyze() {
    // 查找泄漏的引用链
    Pair<List<ApplicationLeak>, List<LibraryLeak>> leaks = leaksFinder.find();
    if (leaks == null) {
      return false;
    }
    //将 gc 引用链写入到 report 文件中
    HeapAnalyzeReporter.addGCPath(leaks, leaksFinder.leakReasonTable);
    // 标记当前 report 已完成
    HeapAnalyzeReporter.done();
    return true;
  }
复制代码


对于解析,KOOM 做了如下优化:


  • GC root  剪枝,由于我们搜索 Path to GC Root 时,是从 GC Root 自顶向下 BFS,如JavaFrameMonitorUsed等此类 GC Root 可以直接剪枝。
  • 基本类型、基本类型数组不搜索、不解析。
  • 同类对象超过阈值时不再搜索。
  • 增加预处理,缓存每个类的所有递归 super class,减少重复计算。
  • 将object ID的类型从long修改为int,Android虚拟机的object ID大小只有32位,目前shark里使用的都是long来存储的,OOM时百万级对象的情况下,可以节省10M内存。

4、总结


KOOM 将内存泄漏做到线上监控,已经是市面上几款内存泄漏框架中的一种创新了

目录
相关文章
|
存储 JSON 监控
APM监控 · 入门篇 · Android端测监控平台建设(1)
APM 全称 Application Performance Management & Monitoring (应用性能管理/监控) 性能问题是导致 App 用户流失的罪魁祸首之一,如果用户在使用我们 App 的时候遇到诸如页面卡顿、响应速度慢、发热严重、流量电量消耗大等问题的时候,很可能就会卸载掉我们的 App。这也是我们在目前工作中面临的巨大挑战之一,尤其是低端机型。
3032 0
APM监控 · 入门篇 · Android端测监控平台建设(1)
|
7月前
|
开发者 Python
新手困扰?该如何了解github的热门趋势和star排行?
新手困扰?该如何了解github的热门趋势和star排行?
239 0
|
存储 算法 Java
【内存】Android C/C++ 内存泄漏分析 unreachable
【内存】Android C/C++ 内存泄漏分析 unreachable
728 0
|
7月前
|
Rust Java C++
Rust生态系统与社区支持:跨语言比较的探究
【2月更文挑战第1天】本文旨在比较Rust语言与其他主流编程语言(如Python、Java、C++)在生态系统与社区支持方面的差异与优势。我们将从标准库、第三方库、工具链、社区活跃度和文档质量等多个维度进行深入分析,以揭示Rust在这些方面所展现出的独特之处和潜力。
|
7月前
|
JavaScript 计算机视觉
vue使用tracking-min.js和face-min.js进行人脸识别
vue使用tracking-min.js和face-min.js进行人脸识别
458 0
|
7月前
|
XML 存储 Rust
Rust中的热门第三方库:Serde与Reqwest探秘
本文将带您走进Rust的生态系统,重点介绍两个广受欢迎的第三方库:Serde和Reqwest。Serde以其强大的序列化和反序列化能力而著称,而Reqwest则为Rust开发者提供了简洁、高效的HTTP客户端功能。通过深入了解这两个库,您将能够更好地利用它们来加速您的Rust项目开发。
|
7月前
|
存储 架构师 Linux
内存泄漏专题(7)hook之宏定义
内存泄漏专题(7)hook之宏定义
96 0
|
7月前
|
缓存 架构师 算法
Java内存溢出如何解决,Java oom排查方法,解决办法
在Java开发过程中,有效的内存管理是保证应用程序稳定性和性能的关键。不正确的内存使用可能导致内存泄露甚至是致命的OutOfMemoryError(OOM)。
通过ComponentCallbacks2来接收onTrimMemory等回调,并mock对应的场景
通过ComponentCallbacks2来接收onTrimMemory等回调,并mock对应的场景
|
移动开发 Rust 前端开发
我有一个想法:用 Rust 来撸 UI
RN 撸 UI 很爽,不仅跨平台,而且可动态化,可是性能就真的一般般。 Flutter 性能还行,可是强加上动态化的方案,性能也就那样了。造轮子永无止境,在 SwiftUI 和 Compose 先后问世后,我也在思考如何利用新的技术来优化 RN 的性能或者创造出全新的框架,有一些想法,也做了些尝试。
523 2