InnoDB表聚集索引层高什么时候发生变化(1)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: InnoDB表聚集索引层高什么时候发生变化

导读

本文略长,主要解决以下几个疑问


1、聚集索引里都存储了什么宝贝2、什么时候索引层高会发生变化3、预留的1/16空闲空间做什么用的4、记录被删除后的空间能回收重复利用吗

1、背景信息

1.1 关于innodb_fill_factor

有个选项 innodb_fill_factor 用于定义InnoDB page的填充率,默认值是100,但其实最高只能填充约15KB的数据,因为InnoDB会预留1/16的空闲空间。在InnoDB文档中,有这么一段话

An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future index growth.

另外,文档中还有这样一段话

When new records are inserted into an InnoDB clustered index, InnoDB tries to leave 1/16 of the page free for future insertions and updates of the index records. If index records are inserted in a sequential order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted in a random order, the pages are from 1/2 to 15/16 full.

上面这两段话,综合起来理解,就是

  1. 即便 innodb_fill_factor=100,也会预留1/16的空闲空间,用于现存记录长度扩展用
  2. 在最佳的顺序写入数据模式下,page填充率有可能可以达到15/16
  3. 在随机写入新数据模式下,page填充率约为 1/2 ~ 15/16
  4. 预留1/16这个规则,只针对聚集索引的叶子节点有效。对于聚集索引的非叶子节点以及辅助索引(叶子及非叶子)节点都没有这个规则
  5. 不过 innodb_fill_factor 选项对叶子节点及非叶子节点都有效,但对存储text/blob溢出列的page无效

1.2 关于innodb_ruby项目

innodb_ruby 项目是由Jeremy Cole 和 Davi Arnaut 两位大神开发的项目,可用于解析InnoDB数据结构,用ruby开发而成。他们还维护了另一个众所周知的项目叫 InnoDB Diagrams,相信稍微资深一点的MySQL DBA都应该知道这个项目。

1.3 关于innblock工具

由八怪开发,用于扫描和分析InnoDB page,详见 innblock | InnoDB page观察利器

1.4 阅读本文背景信息

需要假设您对InnoDB的数据结构已经有了一定了解,包括B+树、聚集索引、辅助索引,以及innodb page的一些简单结构。

如果不太肯定,请先阅读这些文档内容

  • Clustered and Secondary Indexes
  • The Physical Structure of an InnoDB Index
  • InnoDB Row Formats
  • InnoDB Record Structure
  • InnoDB Page Structure

2、测试验证:一层高的InnoDB表聚集索引,最多能存多少条数据

从上面我们知道,一个page最大约能存储15/16容量,扣掉用于存储page header、trailer信息,以及index header、File Segment Header、Infimum&Supremum(两条虚拟记录)等必要的固定消耗之后,实际大约只有15212字节可用于存储用户数据。

这样一来,我们就可以简单测算出一个page大约能存储多少条记录了。

本次用到的测试表,只有一个INT列,同时作为主键建议横版观看,可左右滑动。或者复制链接到PC端打开观看,效果更佳。下同

# MySQL的版本是Percona Server 5.7.22-22,我自己下载源码编译的
[root@yejr.me#] mysql -Smysql.sock innodb
...
Server version: 5.7.22-22-log Source distribution
...
[root@yejr.me]> \s
...
Server version:     5.7.22-22-log Source distribution

# 创建测试表
[root@yejr.me]> CREATE TABLE `t1` (
  `i` int(10) unsigned NOT NULL AUTO_INCREMENT,
  PRIMARY KEY (`i`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 ROW_FORMAT=DYNAMIC;

另外,我们知道每条记录都要几个额外存储的数据

  • DB_TRX_ID,6字节
  • DB_ROLL_PTR,7字节
  • Record Header,至少5字节(用上面这个测试表,只需要5字节,不同数据类型需要的header长度也不同,详见 浅析InnoDB Record Header及page overflow
  • 因此,一条数据需要消耗 4(INT列) + 6 + 7 + 5 = 22字节
  • 此外,大约每4条记录就需要一个directory slot,每个slot需要2字节
  • 综上,假设可以存储N条记录,则 N*22 + N/4*2 = 15212,可求得N约等于676

接下来我们验证一下,往该表中持续插入 676 条数据

[root@yejr.me]> insert into t1 select 0;

...
# 逐次反复执行676次

然后,我们利用 innodb_ruby 工具查看其数据结构

2.1 查看聚集索引page结构

此时t1表的聚集索引树只有一层高,一个page即pageno=3

[root@yejr]# innodb_space -s ibdata1 -T innodb/t1 space-indexes

id name root fseg fseg_id used allocated fill_factor
128 PRIMARY 3 internal 1 1 1 100.00%
128 PRIMARY 3 leaf 2 0 0 0.00%

再用innblock工具扫描佐证一下

[root@yejr]# innblock innodb/t1.ibd scan 16
...
level0 total block is (1)
block_no: 3,level: 0|*|

2.2 查看其directory slot

可以看到170个slot,其中Infimum记录的owned=1,Supremum记录的owned=5

[root@yejr]# innodb_space -s ibdata1 -T innodb/t1 \
-p 3 page-directory-summary|grep -c -v slot

170

2.3 查看整个page的全览图

前面是一堆头信息

[root@yejr]# innodb_space -s ibdata1 -T innodb/t1 -p 3 page-illustrate

Offset ╭────────────────────────────────────────────────────────────────╮
0 │█████████████████████████████████████▋██████████████████████████│
64 │█████████▋███████████████████▋████████████▋████████████▋████▋███│
# 大概从这里开始是第一条记录
128 │█████████████▋████▋████████████████▋████▋████████████████▋████▋█│
192 │███████████████▋████▋████████████████▋████▋████████████████▋████│
...
# 中间是用户数据
...
# 这里是预留的1/16空闲空间
15872 │ │
15936 │ │
# 这里是page directory slot,逆序存储
# trailer占用8字节,此后每个slot占用2字节
# 共170个slot
16000 │ █▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋│
...
16320 │█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋█▋███████▋│
╰────────────────────────────────────────────────────────────────╯

# 最后是统计汇总信息
Legend (█ = 1 byte):
Region Type Bytes Ratio
█ FIL Header 38 0.23%
█ Index Header 36 0.22%
█ File Segment Header 20 0.12%
█ Infimum 13 0.08%
█ Supremum 13 0.08%
█ Record Header 3380 20.63%
█ Record Data 11492 70.14%
█ Page Directory 340 2.08%
█ FIL Trailer 8 0.05%
░ Garbage 0 0.00%
Free 1044 6.37%

可以得到几点信息

  • Record Data共占用11492字节,共676条记录,每条记录17字节(4+6+7)
  • Page Directory共340字节,170个slot,每个slot占用2字节
  • 两条虚拟记录,均占用13字节(含5字节的record header)
  • Record Header共3380字节,共676条记录,每条记录需要5字节头信息(再次提醒,表里字段类型各异,Record Header也会随之不同,仅在本例中只需要5字节。详见 浅析InnoDB Record Header及page overflow
  • 提醒:本次测试是顺序写入,如果是随机写入或批量写入,可能就没办法把15/16的page空间填充的满满当当了


            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
4天前
|
人工智能 运维 安全
|
2天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
9天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
831 109
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
B站开源IndexTTS2,用极致表现力颠覆听觉体验
在语音合成技术不断演进的背景下,早期版本的IndexTTS虽然在多场景应用中展现出良好的表现,但在情感表达的细腻度与时长控制的精准性方面仍存在提升空间。为了解决这些问题,并进一步推动零样本语音合成在实际场景中的落地能力,B站语音团队对模型架构与训练策略进行了深度优化,推出了全新一代语音合成模型——IndexTTS2 。
428 11
|
3天前
|
人工智能 测试技术 API
智能体(AI Agent)搭建全攻略:从概念到实践的终极指南
在人工智能浪潮中,智能体(AI Agent)正成为变革性技术。它们具备自主决策、环境感知、任务执行等能力,广泛应用于日常任务与商业流程。本文详解智能体概念、架构及七步搭建指南,助你打造专属智能体,迎接智能自动化新时代。
|
4天前
|
机器学习/深度学习 传感器 算法
Edge Impulse:面向微型机器学习的MLOps平台——论文解读
Edge Impulse 是一个面向微型机器学习(TinyML)的云端MLOps平台,致力于解决嵌入式与边缘设备上机器学习开发的碎片化与异构性难题。它提供端到端工具链,涵盖数据采集、信号处理、模型训练、优化压缩及部署全流程,支持资源受限设备的高效AI实现。平台集成AutoML、量化压缩与跨硬件编译技术,显著提升开发效率与模型性能,广泛应用于物联网、可穿戴设备与边缘智能场景。
188 127