告别捅嗓子?AI手机程序通过声音检测新冠,准确率已达到89%

简介: 大数据文摘出品不知道大家对做核酸怎么看,反正文摘菌的喉咙已经起茧了

不过为了防疫大局,也为了知道确定自己的健康状况,通过核酸确认自己没有感染新冠又在所难免。

等等……有没有其他方法可以检测自己有没有中招?

最好还是不用出门的那种。

你别说,这样的技术还真有可能出现。

9月8日在西班牙巴塞罗那举行的欧洲呼吸学会国际大会(European Respiratory Society International Congress)上发表的一项研究表明,一款手机应用程序借助人工智能,可以通过你的声音判断中是否感染了新冠肺炎。

目前,这一模型的准确率已经达到89%。

这是不是意味着,将来在家上传自己的声音,就可以代替做核酸了?想想都觉得美妙……

通过声音分辨你是否是阳性,效果优于快速抗原检测

新冠肺炎会影响上呼吸道和声带,导致人的声音发生变化。

在这基础上,马斯特里赫特大学数据科学研究所(Institute of Data Science)的Wafaa Aljbawi女士和她的上司,马斯特里赫特大学医学中心的肺病专家Sami Simon 博士,以及同样来自数据科学研究所的Visara Urovi博士,决定研究是否有可能使用人工智能来分析声音以检测新冠阳性。

他们使用了剑桥大学的COVID-19声音应用程序的数据,该应用程序包含4352名健康和非健康参与者的893个音频样本,其中308人的新冠检测呈阳性。

该应用程序安装在用户的手机上,参与者报告一些人口统计、病史和吸烟状况等基本信息,然后被要求记录一些呼吸声音,包括咳嗽三次,用嘴深呼吸三到五次,在屏幕上读短句子三次。

研究人员使用了一种名为“梅尔谱图分析(Mel-spectrogram)”的语音分析技术,该技术可以识别不同的语音特征,如响度、频率和随时间的变化。

“通过这种方式,我们可以分解参与者声音的许多属性,”Aljbawi女士说。“为了区分新冠病毒阳性患者和阴性正常人群的声音,我们建立了不同的人工智能模型,并评估哪一种模型最适合分类这些病例。”

他们发现LSTM模型优于其他模型。LSTM基于神经网络,它模拟人脑的运作方式,并识别数据中的潜在关系。它擅长时序分析,这使得它适合对随着时间的推移收集的信号进行建模,比如声音。


image.png

最终,这个模型的总体准确率为89% ,正确检出阳性病例(真阳性)的能力为89% ,正确识别阴性病例(真阴性)的能力为83% 。

“这些结果显示,与横向流动试验等最先进的检测方法相比,诊断新冠病毒疾病的准确性有了显著提高,”Aljbawi表示,“侧流检测法(快速抗原检测)的准确率仅为56%,但特异性更高,达99.5%。这一点很重要,因为它意味着快速抗原检测将感染者错误地分类为阴性的情况比我们的测试更为常见。换句话说,使用AI LSTM模型,我们可能会漏掉11/100的病例,这些病例会继续传播感染,而快速抗原检测将会漏掉44/100的病例。”

该做核酸还是得做核酸

之所以跟快速抗原检测相比,是因为许多国家目前已经不再进行免费的核酸病毒检测——也就是国内进行的大规模核酸检测。

核酸病毒检测是对采集的病毒核酸进行直接检测,具有特异性强、灵敏度高的特点,是新型冠状病毒检测的主要方法。

快速抗原检测相对来说要简单一些,可以自己完成,主要通过通过检测病毒的抗原来进行分辨,可以作为新型冠状病毒诊断的主要依据之一,但是准确率相对来说低一些。

许多国家目前都以发放快速抗原自测包为主,抗原检测呈阳性的才会要求做进一步检测。

image.png

当然,因为这种自测包相对来说操作难度还是有的,所以准确率不太高,因此如果能够通过声音来判断是阳性,那既可以节省资源,又能够获得相对准确的结果,确实是一件好事。

所以说,尽管在假阳性方面,AI表现比较差,会有17%的人被误诊为阳性,但是可以把它作为初筛手段,让声音检测呈阳性的,再去进行下一步检测。

并且,这项技术针对的更多是核酸检测昂贵和/或难以分发的低收入国家。

至于我们,该做核酸还是得做核酸……

外,研究人员说,他们的结果还需要大量的数据来验证,自该项目开始以来,从36116名参与者收集了53449个音频样本,可用于改进和验证模型的准确性。他们还正在进行进一步分析,以了解语音中的哪些参数正在影响人工智能模型。

相关报道:

https://www.news-medical.net/news/20220905/AI-model-detects-COVID-19-infection-in-peoplee28099s-voices.aspx



目录
打赏
0
0
0
0
1034
分享
相关文章
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
418 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
2417 20
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
2月前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
42 4
AI做数学学会动脑子! UCL等发现LLM程序性知识,推理绝不是背答案
大型语言模型(LLM)在数学推理中的表现一直备受争议。伦敦大学学院等机构的研究发现,LLM可能通过综合程序性知识而非简单检索来解决数学问题。研究分析了7B和35B参数模型在三个简单数学任务中的数据依赖,表明模型更关注解决问题的过程和方法,而非答案本身。这一发现为改进AI系统提供了新思路,但也指出LLM在复杂问题处理上仍存在局限。论文地址:https://arxiv.org/abs/2411.12580
57 2
算法系统协同优化,vivo与港中文推出BlueLM-V-3B,手机秒变多模态AI专家
BlueLM-V-3B是由vivo与香港中文大学共同研发的多模态大型语言模型,专为移动设备优化。它通过算法和系统协同优化,实现了高效部署和快速生成速度(24.4 token/s),并在OpenCompass基准测试中取得优异成绩(66.1分)。模型小巧,语言部分含27亿参数,视觉编码器含4000万参数,适合移动设备使用。尽管如此,低端设备可能仍面临资源压力,实际应用效果需进一步验证。论文链接:https://arxiv.org/abs/2411.10640。
77 9
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
9012 73
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
让AI像人类一样操作手机,华为也做出来了
华为诺亚方舟实验室研发的LiMAC系统,通过轻量级Transformer网络和微调的视觉-语言模型,实现了高效、准确的Android应用交互与控制。该系统在多个公开数据集上展现出卓越性能,提升了任务执行速度与准确性,同时具备良好的灵活性,但需大量训练数据支持。
277 8

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等