【DSW Gallery】基于SwinTransformer的图像分类示例

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文以图像分类为例,为您介绍如何在PAI-DSW中使用EasyCV。

直接使用

请打开基于SwinTransformer的图像分类示例,并点击右上角 “ 在DSW中打开” 。

image.png


EasyCV图像分类-SwinTransformer

  Swin Transformer是由微软亚研院提出的一种transformer-based通用骨干网络,通过Shifted windows结构来平衡计算效率及local window之间信息交互的问题,目前被广泛应用于图像分类、目标识别、图像分割领域,并取得sota的结果。

  本文将介绍如何使用EasyCV快速使用Swin Transformer 进行图像分类模型的训练、推理

运行环境要求

PAI-Pytorch镜像 or 原生Pytorch1.5+以上环境 GPU机器, 内存32G以上

安装依赖包

1、获取torch和cuda版本,并根据版本号修改mmcv安装命令,安装对应版本的mmcv和nvidia-dali

import torch
import os
os.environ['CUDA']='cu' + torch.version.cuda.replace('.', '')
os.environ['Torch']='torch'+torch.version.__version__.replace('+PAI', '')
!echo "cuda version: $CUDA"
!echo "pytorch version: $Torch"
[2022-07-29 06:44:32,493.493 dsw-142697-674d9f9968-cnbqm:6003 INFO utils.py:30] NOTICE: PAIDEBUGGER is turned off.
cuda version: cu101
pytorch version: torch1.8.2
# install some python deps
! pip install mmcv-full==1.4.4 -f https://download.openmmlab.com/mmcv/dist/${CUDA}/${Torch}/index.html
! pip install http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/third_party/nvidia_dali_cuda100-0.25.0-1535750-py3-none-manylinux2014_x86_64.whl

3、 安装EasyCV算法包

#pip install pai-easycv
! echo y | pip uninstall pai-easycv easycv
! pip install pai-easycv

4、 简单验证

from easycv.apis import *
[2022-07-29 06:46:00,778.778 dsw-142697-674d9f9968-cnbqm:6003 INFO font_manager.py:1423] Generating new fontManager, this may take some time...

Cifar10 分类

下面示例介绍如何利用cifar10数据,使用swin-tiny模型快速进行图像分类模型的训练评估、模型预测过程

数据准备

下载cifar10数据,解压到data/cifar目录, 目录结构如下

data/cifar
└── cifar-10-batches-py
    ├── batches.meta
    ├── data_batch_1
    ├── data_batch_2
    ├── data_batch_3
    ├── data_batch_4
    ├── data_batch_5
    ├── readme.html
    ├── read.py
    └── test_batch
! mkdir -p data/cifar && wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/cifar10/cifar-10-python.tar.gz &&  tar -zxf cifar-10-python.tar.gz -C data/cifar/
--2022-07-29 06:46:38--  http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/cifar10/cifar-10-python.tar.gz
Resolving pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com... 39.98.20.13
Connecting to pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com|39.98.20.13|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 170498071 (163M) [application/gzip]
Saving to: ‘cifar-10-python.tar.gz’
cifar-10-python.tar 100%[===================>] 162.60M  13.5MB/s    in 14s     
2022-07-29 06:46:52 (12.0 MB/s) - ‘cifar-10-python.tar.gz’ saved [170498071/170498071]

训练模型

下载训练配置文件

! rm -rf swintiny_b64_5e_jpg.py
! wget https://raw.githubusercontent.com/alibaba/EasyCV/master/configs/classification/cifar10/swintiny_b64_5e_jpg.py
--2022-07-29 06:47:00--  https://raw.githubusercontent.com/alibaba/EasyCV/master/configs/classification/cifar10/swintiny_b64_5e_jpg.py
Resolving raw.githubusercontent.com... 185.199.111.133, 185.199.108.133, 185.199.109.133, ...
Connecting to raw.githubusercontent.com|185.199.111.133|:443... connected.
^C

使用单卡gpu进行训练和验证集评估

! python -m easycv.tools.train  swintiny_b64_5e_jpg.py --work_dir work_dirs/classification/cifar10/swin_tiny
[2022-07-29 06:47:58,145.145 dsw-142697-674d9f9968-cnbqm:6158 INFO utils.py:30] NOTICE: PAIDEBUGGER is turned off.
Read base config from /home/pai/lib/python3.6/site-packages/easycv/configs/base.py
/home/pai/lib/python3.6/site-packages/easycv/utils/setup_env.py:37: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting OMP_NUM_THREADS environment variable for each process '
/home/pai/lib/python3.6/site-packages/easycv/utils/setup_env.py:47: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting MKL_NUM_THREADS environment variable for each process '
2022-07-29 06:48:04,949 - easycv - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.6.12 |Anaconda, Inc.| (default, Sep  8 2020, 23:10:56) [GCC 7.3.0]
CUDA available: True
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GPU 0: Tesla V100-SXM2-16GB
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.8.2+PAI
PyTorch compiling details: PyTorch built with:
  - GCC 7.5
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.7.0 (Git Hash N/A)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_75,code=compute_75
  - CuDNN 7.6.5
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.1, CUDNN_VERSION=7.6.5, CXX_COMPILER=/usr/lib/ccache/c++, CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, FORCE_FALLBACK_CUDA_MPI=1, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=ON, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 
TorchVision: 0.9.2+cu101
OpenCV: 4.4.0
MMCV: 1.4.4
EasyCV: 0.5.0
------------------------------------------------------------
2022-07-29 06:48:04,949 - easycv - INFO - Distributed training: False
2022-07-29 06:48:04,949 - easycv - INFO - Config:
/home/pai/lib/python3.6/site-packages/easycv/configs/base.py
train_cfg = {}
test_cfg = {}
optimizer_config = dict()  # grad_clip, coalesce, bucket_size_mb
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
dist_params = dict(backend='nccl')
cudnn_benchmark = False
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
/mnt/workspace/swintiny_b64_5e_jpg.py
_base_ = '../../base.py'
# model settings
model = dict(
    type='Classification',
    backbone=dict(
        type='PytorchImageModelWrapper',
        model_name='swin_tiny_patch4_window7_224',
        num_classes=0,
    ),
    head=dict(type='ClsHead', in_channels=768, with_fc=True, num_classes=10))
# dataset settings
class_list = [
    'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
    'ship', 'truck'
]
data_source_cfg = dict(type='ClsSourceCifar10', root='data/cifar/')
dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomHorizontalFlip'),
    dict(
        type='MMRandAugment',
        num_policies=2,
        total_level=10,
        magnitude_level=9,
        magnitude_std=0.5,
        hparams=dict(
            pad_val=[round(x * 255) for x in img_norm_cfg['mean'][::-1]],
            interpolation='bicubic')),
    dict(
        type='MMRandomErasing',
        erase_prob=0.25,
        mode='rand',
        min_area_ratio=0.02,
        max_area_ratio=1 / 3,
        fill_color=[x * 255 for x in img_norm_cfg['mean'][::-1]],
        fill_std=[x * 255 for x in img_norm_cfg['std'][::-1]]),
    dict(type='ToTensor'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
    dict(type='Resize', size=256),
    dict(type='CenterCrop', size=224),
    dict(type='ToTensor'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Collect', keys=['img', 'gt_labels'])
]
data = dict(
    imgs_per_gpu=64,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        data_source=dict(split='train', **data_source_cfg),
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_source=dict(split='test', **data_source_cfg),
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_source=dict(split='test', **data_source_cfg),
        pipeline=test_pipeline))
# additional hooks
eval_config = dict(initial=True, interval=1, gpu_collect=True)
eval_pipelines = [
    dict(
        mode='test',
        data=data['val'],
        dist_eval=True,
        evaluators=[dict(type='ClsEvaluator', topk=(1, 5))],
    )
]
custom_hooks = []
# optimizer
paramwise_options = {
    'norm': dict(weight_decay=0.),
    'bias': dict(weight_decay=0.),
    'absolute_pos_embed': dict(weight_decay=0.),
    'relative_position_bias_table': dict(weight_decay=0.)
}
optimizer = dict(
    type='AdamW',
    lr=1e-4,
    weight_decay=0.05,
    eps=1e-8,
    betas=(0.9, 0.999),
    paramwise_options=paramwise_options)
optimizer_config = dict(grad_clip=dict(max_norm=5.0), update_interval=2)
# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    by_epoch=False,
    min_lr_ratio=1e-2,
    warmup='linear',
    warmup_ratio=1e-3,
    warmup_iters=20,
    warmup_by_epoch=True)
checkpoint_config = dict(interval=5)
# runtime settings
total_epochs = 5
# log setting
log_config = dict(interval=50)
# export config
export = dict(export_neck=True)
2022-07-29 06:48:04,950 - easycv - INFO - Config Dict:
{"train_cfg": {}, "test_cfg": {}, "optimizer_config": {"grad_clip": {"max_norm": 5.0}, "update_interval": 2}, "log_config": {"interval": 50, "hooks": [{"type": "TextLoggerHook"}]}, "dist_params": {"backend": "nccl"}, "cudnn_benchmark": false, "log_level": "INFO", "load_from": null, "resume_from": null, "workflow": [["train", 1]], "model": {"type": "Classification", "backbone": {"type": "PytorchImageModelWrapper", "model_name": "swin_tiny_patch4_window7_224", "num_classes": 0}, "head": {"type": "ClsHead", "in_channels": 768, "with_fc": true, "num_classes": 10}}, "class_list": ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"], "data_source_cfg": {"type": "ClsSourceCifar10", "root": "data/cifar/"}, "dataset_type": "ClsDataset", "img_norm_cfg": {"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, "train_pipeline": [{"type": "RandomResizedCrop", "size": 224}, {"type": "RandomHorizontalFlip"}, {"type": "MMRandAugment", "num_policies": 2, "total_level": 10, "magnitude_level": 9, "magnitude_std": 0.5, "hparams": {"pad_val": [104, 116, 124], "interpolation": "bicubic"}}, {"type": "MMRandomErasing", "erase_prob": 0.25, "mode": "rand", "min_area_ratio": 0.02, "max_area_ratio": 0.3333333333333333, "fill_color": [103.53, 116.28, 123.675], "fill_std": [57.375, 57.120000000000005, 58.395]}, {"type": "ToTensor"}, {"type": "Normalize", "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, {"type": "Collect", "keys": ["img", "gt_labels"]}], "test_pipeline": [{"type": "Resize", "size": 256}, {"type": "CenterCrop", "size": 224}, {"type": "ToTensor"}, {"type": "Normalize", "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, {"type": "Collect", "keys": ["img", "gt_labels"]}], "data": {"imgs_per_gpu": 64, "workers_per_gpu": 2, "train": {"type": "ClsDataset", "data_source": {"split": "train", "type": "ClsSourceCifar10", "root": "data/cifar/"}, "pipeline": [{"type": "RandomResizedCrop", "size": 224}, {"type": "RandomHorizontalFlip"}, {"type": "MMRandAugment", "num_policies": 2, "total_level": 10, "magnitude_level": 9, "magnitude_std": 0.5, "hparams": {"pad_val": [104, 116, 124], "interpolation": "bicubic"}}, {"type": "MMRandomErasing", "erase_prob": 0.25, "mode": "rand", "min_area_ratio": 0.02, "max_area_ratio": 0.3333333333333333, "fill_color": [103.53, 116.28, 123.675], "fill_std": [57.375, 57.120000000000005, 58.395]}, {"type": "ToTensor"}, {"type": "Normalize", "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, {"type": "Collect", "keys": ["img", "gt_labels"]}]}, "val": {"type": "ClsDataset", "data_source": {"split": "test", "type": "ClsSourceCifar10", "root": "data/cifar/"}, "pipeline": [{"type": "Resize", "size": 256}, {"type": "CenterCrop", "size": 224}, {"type": "ToTensor"}, {"type": "Normalize", "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, {"type": "Collect", "keys": ["img", "gt_labels"]}]}, "test": {"type": "ClsDataset", "data_source": {"split": "test", "type": "ClsSourceCifar10", "root": "data/cifar/"}, "pipeline": [{"type": "Resize", "size": 256}, {"type": "CenterCrop", "size": 224}, {"type": "ToTensor"}, {"type": "Normalize", "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, {"type": "Collect", "keys": ["img", "gt_labels"]}]}}, "eval_config": {"initial": true, "interval": 1, "gpu_collect": true}, "eval_pipelines": [{"mode": "test", "data": {"type": "ClsDataset", "data_source": {"split": "test", "type": "ClsSourceCifar10", "root": "data/cifar/"}, "pipeline": [{"type": "Resize", "size": 256}, {"type": "CenterCrop", "size": 224}, {"type": "ToTensor"}, {"type": "Normalize", "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}, {"type": "Collect", "keys": ["img", "gt_labels"]}]}, "dist_eval": true, "evaluators": [{"type": "ClsEvaluator", "topk": [1, 5]}]}], "custom_hooks": [], "paramwise_options": {"norm": {"weight_decay": 0.0}, "bias": {"weight_decay": 0.0}, "absolute_pos_embed": {"weight_decay": 0.0}, "relative_position_bias_table": {"weight_decay": 0.0}}, "optimizer": {"type": "AdamW", "lr": 0.0001, "weight_decay": 0.05, "eps": 1e-08, "betas": [0.9, 0.999], "paramwise_options": {"norm": {"weight_decay": 0.0}, "bias": {"weight_decay": 0.0}, "absolute_pos_embed": {"weight_decay": 0.0}, "relative_position_bias_table": {"weight_decay": 0.0}}}, "lr_config": {"policy": "CosineAnnealing", "by_epoch": false, "min_lr_ratio": 0.01, "warmup": "linear", "warmup_ratio": 0.001, "warmup_iters": 20, "warmup_by_epoch": true}, "checkpoint_config": {"interval": 5}, "total_epochs": 5, "export": {"export_neck": true}, "work_dir": "work_dirs/classification/cifar10/swin_tiny", "oss_work_dir": null, "gpus": 1}
2022-07-29 06:48:04,950 - easycv - INFO - GPU INFO : Tesla V100-SXM2-16GB
2022-07-29 06:48:05,430 - easycv - INFO - load model from default path: https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/classification/timm/swint/swin_tiny_patch4_window7_224.pth
Downloading: "https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/classification/timm/swint/swin_tiny_patch4_window7_224.pth" to /root/.cache/torch/hub/checkpoints/swin_tiny_patch4_window7_224.pth
Classification(
  (backbone): PytorchImageModelWrapper(
    (model): SwinTransformer(
      (patch_embed): PatchEmbed(
        (proj): Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4))
        (norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
      )
      (pos_drop): Dropout(p=0.0, inplace=False)
      (layers): Sequential(
        (0): BasicLayer(
          dim=96, input_resolution=(56, 56), depth=2
          (blocks): ModuleList(
            (0): SwinTransformerBlock(
              (norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=96, out_features=288, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=96, out_features=96, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): Identity()
              (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=96, out_features=384, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=384, out_features=96, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (1): SwinTransformerBlock(
              (norm1): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=96, out_features=288, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=96, out_features=96, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((96,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=96, out_features=384, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=384, out_features=96, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
          )
          (downsample): PatchMerging(
            input_resolution=(56, 56), dim=96
            (reduction): Linear(in_features=384, out_features=192, bias=False)
            (norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
          )
        )
        (1): BasicLayer(
          dim=192, input_resolution=(28, 28), depth=2
          (blocks): ModuleList(
            (0): SwinTransformerBlock(
              (norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=192, out_features=576, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=192, out_features=192, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=192, out_features=768, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=768, out_features=192, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (1): SwinTransformerBlock(
              (norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=192, out_features=576, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=192, out_features=192, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=192, out_features=768, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=768, out_features=192, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
          )
          (downsample): PatchMerging(
            input_resolution=(28, 28), dim=192
            (reduction): Linear(in_features=768, out_features=384, bias=False)
            (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
          )
        )
        (2): BasicLayer(
          dim=384, input_resolution=(14, 14), depth=6
          (blocks): ModuleList(
            (0): SwinTransformerBlock(
              (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=384, out_features=1152, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=384, out_features=384, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=384, out_features=1536, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=1536, out_features=384, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (1): SwinTransformerBlock(
              (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=384, out_features=1152, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=384, out_features=384, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=384, out_features=1536, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=1536, out_features=384, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (2): SwinTransformerBlock(
              (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=384, out_features=1152, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=384, out_features=384, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=384, out_features=1536, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=1536, out_features=384, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (3): SwinTransformerBlock(
              (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=384, out_features=1152, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=384, out_features=384, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=384, out_features=1536, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=1536, out_features=384, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (4): SwinTransformerBlock(
              (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=384, out_features=1152, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=384, out_features=384, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=384, out_features=1536, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=1536, out_features=384, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (5): SwinTransformerBlock(
              (norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=384, out_features=1152, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=384, out_features=384, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=384, out_features=1536, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=1536, out_features=384, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
          )
          (downsample): PatchMerging(
            input_resolution=(14, 14), dim=384
            (reduction): Linear(in_features=1536, out_features=768, bias=False)
            (norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
          )
        )
        (3): BasicLayer(
          dim=768, input_resolution=(7, 7), depth=2
          (blocks): ModuleList(
            (0): SwinTransformerBlock(
              (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=768, out_features=2304, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=768, out_features=768, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=768, out_features=3072, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=3072, out_features=768, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
            (1): SwinTransformerBlock(
              (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
              (attn): WindowAttention(
                (qkv): Linear(in_features=768, out_features=2304, bias=True)
                (attn_drop): Dropout(p=0.0, inplace=False)
                (proj): Linear(in_features=768, out_features=768, bias=True)
                (proj_drop): Dropout(p=0.0, inplace=False)
                (softmax): Softmax(dim=-1)
              )
              (drop_path): DropPath()
              (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): Linear(in_features=768, out_features=3072, bias=True)
                (act): GELU()
                (fc2): Linear(in_features=3072, out_features=768, bias=True)
                (drop): Dropout(p=0.0, inplace=False)
              )
            )
          )
        )
      )
      (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
      (avgpool): AdaptiveAvgPool1d(output_size=1)
      (head): Identity()
    )
  )
  (head_0): ClsHead(
    (criterion): CrossEntropyLossWithLabelSmooth(
      (log_softmax): LogSoftmax(dim=1)
      (nllloss): NLLLoss()
      (cls): Identity()
    )
    (fc_cls): Linear(in_features=768, out_features=10, bias=True)
  )
  (avg_pool): AdaptiveAvgPool2d(output_size=(1, 1))
  (activate_fn): Softmax(dim=1)
)
data shuffle: True
GPU INFO :  Tesla V100-SXM2-16GB
paramwise_options -- backbone.model.patch_embed.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.patch_embed.norm.weight: weight_decay=0.0
paramwise_options -- backbone.model.patch_embed.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.patch_embed.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.0.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.blocks.1.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.downsample.norm.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.downsample.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.0.downsample.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.0.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.blocks.1.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.downsample.norm.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.downsample.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.1.downsample.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.0.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.1.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.2.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.3.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.4.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.blocks.5.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.downsample.norm.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.downsample.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.2.downsample.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.0.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.norm1.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.norm1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.attn.relative_position_bias_table: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.attn.qkv.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.attn.proj.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.norm2.weight: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.norm2.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.mlp.fc1.bias: weight_decay=0.0
paramwise_options -- backbone.model.layers.3.blocks.1.mlp.fc2.bias: weight_decay=0.0
paramwise_options -- backbone.model.norm.weight: weight_decay=0.0
paramwise_options -- backbone.model.norm.bias: weight_decay=0.0
paramwise_options -- backbone.model.norm.bias: weight_decay=0.0
paramwise_options -- head_0.fc_cls.bias: weight_decay=0.0
2022-07-29 06:48:19,488 - easycv - INFO - open validate hook
2022-07-29 06:48:19,916 - easycv - INFO - register EvaluationHook {'initial': True, 'evaluators': [<easycv.core.evaluation.classification_eval.ClsEvaluator object at 0x7f928dab1198>]}
2022-07-29 06:48:19,916 - easycv - INFO - Start running, host: root@dsw-142697-674d9f9968-cnbqm, work_dir: /mnt/workspace/work_dirs/classification/cifar10/swin_tiny
2022-07-29 06:48:19,917 - easycv - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) CosineAnnealingLrUpdaterHook       
(ABOVE_NORMAL) OptimizerHook                      
(NORMAL      ) CheckpointHook                     
(NORMAL      ) EvalHook                           
(NORMAL      ) BestCkptSaverHook                  
(VERY_LOW    ) PreLoggerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) CosineAnnealingLrUpdaterHook       
(LOW         ) IterTimerHook                      
(VERY_LOW    ) PreLoggerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_iter:
(VERY_HIGH   ) CosineAnnealingLrUpdaterHook       
(LOW         ) IterTimerHook                      
 -------------------- 
after_train_iter:
(ABOVE_NORMAL) OptimizerHook                      
(NORMAL      ) CheckpointHook                     
(LOW         ) IterTimerHook                      
(VERY_LOW    ) PreLoggerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) CheckpointHook                     
(NORMAL      ) EvalHook                           
(NORMAL      ) BestCkptSaverHook                  
(VERY_LOW    ) PreLoggerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_epoch:
(LOW         ) IterTimerHook                      
(VERY_LOW    ) PreLoggerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_epoch:
(VERY_LOW    ) PreLoggerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_run:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
2022-07-29 06:48:19,918 - easycv - INFO - workflow: [('train', 1)], max: 5 epochs
2022-07-29 06:48:19,919 - easycv - INFO - Checkpoints will be saved to /mnt/workspace/work_dirs/classification/cifar10/swin_tiny by HardDiskBackend.
[>>>>>>>>>>>>>>>>>>>>>>>>] 10000/10000, 484.2 task/s, elapsed: 21s, ETA:     0s
2022-07-29 06:48:40,618 - easycv - INFO - SaveBest metric_name: ['ClsEvaluator_neck_top1']
2022-07-29 06:48:40,848 - easycv - INFO - End SaveBest metric
2022-07-29 06:48:59,610 - easycv - INFO - Epoch [1][50/782] lr: 4.128e-07, eta: 0:24:05, time: 0.375, data_time: 0.055, memory: 7543, loss: 1.1466
2022-07-29 06:49:16,016 - easycv - INFO - Epoch [1][100/782]  lr: 7.312e-07, eta: 0:22:18, time: 0.328, data_time: 0.008, memory: 7543, loss: 1.1416
2022-07-29 06:49:32,443 - easycv - INFO - Epoch [1][150/782]  lr: 1.048e-06, eta: 0:21:32, time: 0.329, data_time: 0.008, memory: 7543, loss: 1.1374
2022-07-29 06:49:48,878 - easycv - INFO - Epoch [1][200/782]  lr: 1.362e-06, eta: 0:21:01, time: 0.329, data_time: 0.008, memory: 7543, loss: 1.1291
2022-07-29 06:50:05,331 - easycv - INFO - Epoch [1][250/782]  lr: 1.674e-06, eta: 0:20:36, time: 0.329, data_time: 0.009, memory: 7543, loss: 1.1226
2022-07-29 06:50:21,803 - easycv - INFO - Epoch [1][300/782]  lr: 1.981e-06, eta: 0:20:14, time: 0.329, data_time: 0.009, memory: 7543, loss: 1.1092
2022-07-29 06:50:38,274 - easycv - INFO - Epoch [1][350/782]  lr: 2.284e-06, eta: 0:19:53, time: 0.329, data_time: 0.009, memory: 7543, loss: 1.0938
2022-07-29 06:50:54,750 - easycv - INFO - Epoch [1][400/782]  lr: 2.582e-06, eta: 0:19:34, time: 0.330, data_time: 0.009, memory: 7543, loss: 1.0705
2022-07-29 06:51:11,245 - easycv - INFO - Epoch [1][450/782]  lr: 2.873e-06, eta: 0:19:16, time: 0.330, data_time: 0.009, memory: 7543, loss: 1.0445
2022-07-29 06:51:27,733 - easycv - INFO - Epoch [1][500/782]  lr: 3.158e-06, eta: 0:18:57, time: 0.330, data_time: 0.009, memory: 7543, loss: 0.9987
2022-07-29 06:51:44,241 - easycv - INFO - Epoch [1][550/782]  lr: 3.436e-06, eta: 0:18:40, time: 0.330, data_time: 0.009, memory: 7543, loss: 0.9462
2022-07-29 06:52:00,791 - easycv - INFO - Epoch [1][600/782]  lr: 3.705e-06, eta: 0:18:22, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.8853
2022-07-29 06:52:17,339 - easycv - INFO - Epoch [1][650/782]  lr: 3.966e-06, eta: 0:18:05, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.8349
2022-07-29 06:52:33,915 - easycv - INFO - Epoch [1][700/782]  lr: 4.218e-06, eta: 0:17:48, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.7912
2022-07-29 06:52:50,481 - easycv - INFO - Epoch [1][750/782]  lr: 4.459e-06, eta: 0:17:31, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.7605
[>>>>>>>>>>>>>>>>>>>>>>>>] 10000/10000, 531.5 task/s, elapsed: 19s, ETA:     0s
2022-07-29 06:53:19,733 - easycv - INFO - SaveBest metric_name: ['ClsEvaluator_neck_top1']
2022-07-29 06:53:20,617 - easycv - INFO - End SaveBest metric
2022-07-29 06:53:20,618 - easycv - INFO - Epoch(val) [1][782] ClsEvaluator_neck_top1: 81.7700, neck_top1: 81.7700, neck_top5: 99.2500
2022-07-29 06:53:39,552 - easycv - INFO - Epoch [2][50/782] lr: 4.833e-06, eta: 0:16:33, time: 0.378, data_time: 0.056, memory: 7543, loss: 0.7205
2022-07-29 06:53:56,044 - easycv - INFO - Epoch [2][100/782]  lr: 5.046e-06, eta: 0:16:18, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.6969
2022-07-29 06:54:12,570 - easycv - INFO - Epoch [2][150/782]  lr: 5.248e-06, eta: 0:16:03, time: 0.331, data_time: 0.008, memory: 7543, loss: 0.6773
2022-07-29 06:54:29,102 - easycv - INFO - Epoch [2][200/782]  lr: 5.437e-06, eta: 0:15:48, time: 0.331, data_time: 0.008, memory: 7543, loss: 0.6596
2022-07-29 06:54:45,636 - easycv - INFO - Epoch [2][250/782]  lr: 5.613e-06, eta: 0:15:33, time: 0.331, data_time: 0.008, memory: 7543, loss: 0.6641
2022-07-29 06:55:02,177 - easycv - INFO - Epoch [2][300/782]  lr: 5.777e-06, eta: 0:15:17, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.6380
2022-07-29 06:55:18,721 - easycv - INFO - Epoch [2][350/782]  lr: 5.927e-06, eta: 0:15:02, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.6203
2022-07-29 06:55:35,271 - easycv - INFO - Epoch [2][400/782]  lr: 6.064e-06, eta: 0:14:46, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.6249
2022-07-29 06:55:51,796 - easycv - INFO - Epoch [2][450/782]  lr: 6.187e-06, eta: 0:14:31, time: 0.330, data_time: 0.009, memory: 7543, loss: 0.6121
2022-07-29 06:56:08,342 - easycv - INFO - Epoch [2][500/782]  lr: 6.296e-06, eta: 0:14:15, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.6135
2022-07-29 06:56:24,905 - easycv - INFO - Epoch [2][550/782]  lr: 6.390e-06, eta: 0:13:59, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.6061
2022-07-29 06:56:41,469 - easycv - INFO - Epoch [2][600/782]  lr: 6.470e-06, eta: 0:13:43, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5945
2022-07-29 06:56:58,045 - easycv - INFO - Epoch [2][650/782]  lr: 6.536e-06, eta: 0:13:28, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5942
2022-07-29 06:57:14,617 - easycv - INFO - Epoch [2][700/782]  lr: 6.587e-06, eta: 0:13:12, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5834
2022-07-29 06:57:31,196 - easycv - INFO - Epoch [2][750/782]  lr: 6.623e-06, eta: 0:12:56, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5798
[>>>>>>>>>>>>>>>>>>>>>>>>] 10000/10000, 531.7 task/s, elapsed: 19s, ETA:     0s
2022-07-29 06:58:00,449 - easycv - INFO - SaveBest metric_name: ['ClsEvaluator_neck_top1']
2022-07-29 06:58:01,307 - easycv - INFO - End SaveBest metric
2022-07-29 06:58:01,307 - easycv - INFO - Epoch(val) [2][782] ClsEvaluator_neck_top1: 92.1600, neck_top1: 92.1600, neck_top5: 99.8700
2022-07-29 06:58:20,225 - easycv - INFO - Epoch [3][50/782] lr: 6.651e-06, eta: 0:12:18, time: 0.378, data_time: 0.056, memory: 7543, loss: 0.5729
2022-07-29 06:58:36,710 - easycv - INFO - Epoch [3][100/782]  lr: 6.649e-06, eta: 0:12:02, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5642
2022-07-29 06:58:53,211 - easycv - INFO - Epoch [3][150/782]  lr: 6.632e-06, eta: 0:11:47, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5743
2022-07-29 06:59:09,736 - easycv - INFO - Epoch [3][200/782]  lr: 6.601e-06, eta: 0:11:31, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5744
2022-07-29 06:59:26,269 - easycv - INFO - Epoch [3][250/782]  lr: 6.557e-06, eta: 0:11:15, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5725
2022-07-29 06:59:42,796 - easycv - INFO - Epoch [3][300/782]  lr: 6.499e-06, eta: 0:11:00, time: 0.331, data_time: 0.008, memory: 7543, loss: 0.5746
2022-07-29 06:59:59,337 - easycv - INFO - Epoch [3][350/782]  lr: 6.427e-06, eta: 0:10:44, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5600
2022-07-29 07:00:15,894 - easycv - INFO - Epoch [3][400/782]  lr: 6.342e-06, eta: 0:10:28, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5519
2022-07-29 07:00:32,462 - easycv - INFO - Epoch [3][450/782]  lr: 6.245e-06, eta: 0:10:13, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5552
2022-07-29 07:00:49,025 - easycv - INFO - Epoch [3][500/782]  lr: 6.135e-06, eta: 0:09:57, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5465
2022-07-29 07:01:05,586 - easycv - INFO - Epoch [3][550/782]  lr: 6.014e-06, eta: 0:09:41, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5589
2022-07-29 07:01:22,157 - easycv - INFO - Epoch [3][600/782]  lr: 5.882e-06, eta: 0:09:25, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5475
2022-07-29 07:01:38,728 - easycv - INFO - Epoch [3][650/782]  lr: 5.739e-06, eta: 0:09:09, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5512
2022-07-29 07:01:55,309 - easycv - INFO - Epoch [3][700/782]  lr: 5.585e-06, eta: 0:08:53, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5482
2022-07-29 07:02:11,879 - easycv - INFO - Epoch [3][750/782]  lr: 5.423e-06, eta: 0:08:37, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5387
[>>>>>>>>>>>>>>>>>>>>>>>>] 10000/10000, 528.8 task/s, elapsed: 19s, ETA:     0s
2022-07-29 07:02:41,242 - easycv - INFO - SaveBest metric_name: ['ClsEvaluator_neck_top1']
2022-07-29 07:02:42,104 - easycv - INFO - End SaveBest metric
2022-07-29 07:02:42,105 - easycv - INFO - Epoch(val) [3][782] ClsEvaluator_neck_top1: 94.1200, neck_top1: 94.1200, neck_top5: 99.9400
2022-07-29 07:03:01,065 - easycv - INFO - Epoch [4][50/782] lr: 5.137e-06, eta: 0:08:06, time: 0.378, data_time: 0.057, memory: 7543, loss: 0.5471
2022-07-29 07:03:17,556 - easycv - INFO - Epoch [4][100/782]  lr: 4.953e-06, eta: 0:07:50, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5307
2022-07-29 07:03:34,078 - easycv - INFO - Epoch [4][150/782]  lr: 4.761e-06, eta: 0:07:34, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5333
2022-07-29 07:03:50,597 - easycv - INFO - Epoch [4][200/782]  lr: 4.564e-06, eta: 0:07:18, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5435
2022-07-29 07:04:07,136 - easycv - INFO - Epoch [4][250/782]  lr: 4.361e-06, eta: 0:07:02, time: 0.331, data_time: 0.008, memory: 7543, loss: 0.5269
2022-07-29 07:04:23,685 - easycv - INFO - Epoch [4][300/782]  lr: 4.154e-06, eta: 0:06:47, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5276
2022-07-29 07:04:40,256 - easycv - INFO - Epoch [4][350/782]  lr: 3.943e-06, eta: 0:06:31, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5447
2022-07-29 07:04:56,816 - easycv - INFO - Epoch [4][400/782]  lr: 3.729e-06, eta: 0:06:15, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5268
2022-07-29 07:05:13,366 - easycv - INFO - Epoch [4][450/782]  lr: 3.514e-06, eta: 0:05:59, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5448
2022-07-29 07:05:29,954 - easycv - INFO - Epoch [4][500/782]  lr: 3.297e-06, eta: 0:05:43, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5443
2022-07-29 07:05:46,529 - easycv - INFO - Epoch [4][550/782]  lr: 3.080e-06, eta: 0:05:27, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5295
2022-07-29 07:06:03,082 - easycv - INFO - Epoch [4][600/782]  lr: 2.865e-06, eta: 0:05:11, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5321
2022-07-29 07:06:19,638 - easycv - INFO - Epoch [4][650/782]  lr: 2.651e-06, eta: 0:04:55, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5335
2022-07-29 07:06:36,215 - easycv - INFO - Epoch [4][700/782]  lr: 2.440e-06, eta: 0:04:39, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5321
2022-07-29 07:06:52,785 - easycv - INFO - Epoch [4][750/782]  lr: 2.233e-06, eta: 0:04:23, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5322
[>>>>>>>>>>>>>>>>>>>>>>>>] 10000/10000, 528.3 task/s, elapsed: 19s, ETA:     0s
2022-07-29 07:07:22,162 - easycv - INFO - SaveBest metric_name: ['ClsEvaluator_neck_top1']
2022-07-29 07:07:23,026 - easycv - INFO - End SaveBest metric
2022-07-29 07:07:23,027 - easycv - INFO - Epoch(val) [4][782] ClsEvaluator_neck_top1: 95.0700, neck_top1: 95.0700, neck_top5: 99.9400
2022-07-29 07:07:41,981 - easycv - INFO - Epoch [5][50/782] lr: 1.905e-06, eta: 0:03:54, time: 0.378, data_time: 0.056, memory: 7543, loss: 0.5289
2022-07-29 07:07:58,498 - easycv - INFO - Epoch [5][100/782]  lr: 1.713e-06, eta: 0:03:39, time: 0.330, data_time: 0.008, memory: 7543, loss: 0.5190
2022-07-29 07:08:15,024 - easycv - INFO - Epoch [5][150/782]  lr: 1.528e-06, eta: 0:03:23, time: 0.331, data_time: 0.008, memory: 7543, loss: 0.5357
2022-07-29 07:08:31,553 - easycv - INFO - Epoch [5][200/782]  lr: 1.352e-06, eta: 0:03:07, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5239
2022-07-29 07:08:48,096 - easycv - INFO - Epoch [5][250/782]  lr: 1.185e-06, eta: 0:02:51, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5078
2022-07-29 07:09:04,662 - easycv - INFO - Epoch [5][300/782]  lr: 1.029e-06, eta: 0:02:35, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5215
2022-07-29 07:09:21,204 - easycv - INFO - Epoch [5][350/782]  lr: 8.847e-07, eta: 0:02:19, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5220
2022-07-29 07:09:37,797 - easycv - INFO - Epoch [5][400/782]  lr: 7.525e-07, eta: 0:02:03, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5129
2022-07-29 07:09:54,371 - easycv - INFO - Epoch [5][450/782]  lr: 6.336e-07, eta: 0:01:46, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5150
2022-07-29 07:10:10,955 - easycv - INFO - Epoch [5][500/782]  lr: 5.291e-07, eta: 0:01:30, time: 0.332, data_time: 0.009, memory: 7543, loss: 0.5194
2022-07-29 07:10:27,518 - easycv - INFO - Epoch [5][550/782]  lr: 4.399e-07, eta: 0:01:14, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5339
2022-07-29 07:10:44,072 - easycv - INFO - Epoch [5][600/782]  lr: 3.667e-07, eta: 0:00:58, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5248
2022-07-29 07:11:00,640 - easycv - INFO - Epoch [5][650/782]  lr: 3.107e-07, eta: 0:00:42, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5257
2022-07-29 07:11:17,204 - easycv - INFO - Epoch [5][700/782]  lr: 2.725e-07, eta: 0:00:26, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5295
2022-07-29 07:11:33,772 - easycv - INFO - Epoch [5][750/782]  lr: 2.530e-07, eta: 0:00:10, time: 0.331, data_time: 0.009, memory: 7543, loss: 0.5255
2022-07-29 07:11:44,196 - easycv - INFO - Saving checkpoint at 5 epochs
[>>>>>>>>>>>>>>>>>>>>>>>>] 10000/10000, 528.2 task/s, elapsed: 19s, ETA:     0s
2022-07-29 07:12:03,717 - easycv - INFO - SaveBest metric_name: ['ClsEvaluator_neck_top1']
2022-07-29 07:12:04,532 - easycv - INFO - End SaveBest metric
2022-07-29 07:12:04,533 - easycv - INFO - Epoch(val) [5][782] ClsEvaluator_neck_top1: 95.3400, neck_top1: 95.3400, neck_top5: 99.9400

导出模型

模型训练完成,使用export命令导出模型进行推理,导出的模型包含推理时所需的预处理信息、后处理信息

# 查看训练产生的pt文件
! ls  work_dirs/classification/cifar10/swin_tiny*
20220729_064804.log   ClsEvaluator_neck_top1_best.pth
20220729_064804.log.json  epoch_5.pth

ClsEvaluator_neck_top1_best.pth 是训练过程中产生的acc最高的pth,导出该模型

! python -m easycv.tools.export swintiny_b64_5e_jpg.py work_dirs/classification/cifar10/swin_tiny/ClsEvaluator_neck_top1_best.pth  work_dirs/classification/cifar10/swin_tiny/best_export.pth
[2022-07-29 07:12:35,065.065 dsw-142697-674d9f9968-cnbqm:6548 INFO utils.py:30] NOTICE: PAIDEBUGGER is turned off.
swintiny_b64_5e_jpg.py
Read base config from /home/pai/lib/python3.6/site-packages/easycv/configs/base.py
2022-07-29 07:12:43,302 - easycv - INFO - load model from default path: https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/classification/timm/swint/swin_tiny_patch4_window7_224.pth
load checkpoint from local path: work_dirs/classification/cifar10/swin_tiny/ClsEvaluator_neck_top1_best.pth

预测

下载测试图片

! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/cifar10/qince_data/predict/aeroplane_s_000004.png
Will not apply HSTS. The HSTS database must be a regular and non-world-writable file.
ERROR: could not open HSTS store at '/root/.wget-hsts'. HSTS will be disabled.
--2022-07-29 07:12:49--  http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/cifar10/qince_data/predict/aeroplane_s_000004.png
Resolving pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com... 39.98.20.13
Connecting to pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com|39.98.20.13|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2391 (2.3K) [image/png]
Saving to: ‘aeroplane_s_000004.png’
aeroplane_s_000004. 100%[===================>]   2.33K  --.-KB/s    in 0s      
2022-07-29 07:12:49 (426 MB/s) - ‘aeroplane_s_000004.png’ saved [2391/2391]
import cv2
from easycv.predictors.classifier import TorchClassifier
output_ckpt = 'work_dirs/classification/cifar10/swin_tiny/best_export.pth'
tcls = TorchClassifier(output_ckpt, topk=1)
img = cv2.imread('aeroplane_s_000004.png')
# input image should be RGB order
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
output = tcls.predict([img])
print(output)
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
消息中间件 运维 算法
【DSW Gallery】IsolationForest算法解决异常检测问题
IsolationForest 是一种无监督的异常检测算法, 用于对无 label 的数据进行异常检测,并且支持将 IsolationForest 模型部署成一个流服务,用来对实时数据进行异常检测。该 Demo 将介绍如何在 DSW 中使用 IsolationForest 算法解决异常检测问题。
【DSW Gallery】IsolationForest算法解决异常检测问题
|
人工智能 并行计算 算法
【DSW Gallery】基于MOCOV2的自监督学习示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文以自监督学习-MOCO为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】基于MOCOV2的自监督学习示例
|
算法 PyTorch 算法框架/工具
【DSW Gallery】基于EasyCV的视频分类示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文以视频分类为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】基于EasyCV的视频分类示例
|
机器学习/深度学习 并行计算 数据可视化
【DSW Gallery】EasyCV-基于关键点的视频分类示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文以基于关键点的视频分类为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】EasyCV-基于关键点的视频分类示例
|
机器学习/深度学习 算法
【DSW Gallery】如何使用EasyRec训练DeepFM模型
本文基于EasyRec 0.4.7 展示了如何使用EasyRec快速的训练一个DeepFM模型
【DSW Gallery】如何使用EasyRec训练DeepFM模型
|
并行计算 算法 自动驾驶
【DSW Gallery】基于EasyCV的BEVFormer 3D检测示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文将以BEVFormer 3D检测为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】基于EasyCV的BEVFormer 3D检测示例
|
消息中间件 运维 算法
【DSW Gallery】OneClassSVM 算法解决异常检测问题
OneClassSVM 是一种无监督的异常检测算法, 用于对无 label 的数据进行异常检测,并且支持将 OneClassSVM 模型部署成一个流服务,用来对实时数据进行异常检测。该D emo 将介绍如何在 DSW 中使用 OneClassSVM 算法解决异常检测问题。
【DSW Gallery】OneClassSVM 算法解决异常检测问题
|
文字识别 并行计算 算法
【DSW Gallery】基于EasyCV的文字识别示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文以文字识别为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】基于EasyCV的文字识别示例
|
缓存 自然语言处理 Shell
【DSW Gallery】基于预训练模型的多场景文本生成(以新闻标题生成为例)
EasyNLP提供多种模型的训练及预测功能,旨在帮助自然语言开发者方便快捷地构建模型并应用于生产。本文以中文文本生成为例,为您介绍如何在PAI-DSW中使用EasyNLP。
【DSW Gallery】基于预训练模型的多场景文本生成(以新闻标题生成为例)
|
人工智能 并行计算 算法
【DSW Gallery】基于MAE的自监督学习示例
EasyCV是基于Pytorch,以自监督学习和Transformer技术为核心的 all-in-one 视觉算法建模工具,并包含图像分类,度量学习,目标检测,姿态识别等视觉任务的SOTA算法。本文自监督学习-MAE为例,为您介绍如何在PAI-DSW中使用EasyCV。
【DSW Gallery】基于MAE的自监督学习示例

热门文章

最新文章

下一篇
无影云桌面