数学优化和机器学习结合使用的四种方法简介

简介: 数学优化(或数学规划)是一个强大的决策工具。通过制定目标并指定约束条件和变量,数学优化可以帮助在当前现实环境下做出最佳决策。它已经在航空、物流、电力和金融等许多不同行业证明了其价值。

数学优化与机器学习
image.png
数学优化(或数学规划)是一个强大的决策工具。通过制定目标并指定约束条件和变量,数学优化可以帮助在当前现实环境下做出最佳决策。它已经在航空、物流、电力和金融等许多不同行业证明了其价值。

机器学习是人工智能的一个分支领域。计算机可以识别数据中的模式并学习预测未来,可以进行聚类、检测异常或生成新的音乐或图像。机器学习的三种类型(有监督、无监督和强化学习)可以应用于所有行业,比如医疗保健,甚至是艺术。机器学习模型都是关于概率的,并预测将发生事情的概率

两种方法各有优缺点。当数据变化太多时,机器学习模型就变得毫无用处,模型需要重新训练或从头开始重建。数学优化需要良好的数学描述,它不能像机器学习那样处理非结构化数据。此外,如果问题变得太大,您可能需要一个商业解决程序来解决问题,这可能是相当昂贵的。

有些问题更适合机器学习,而另一些问题则更适合数学优化。当您希望发现数据中的模式、查找相似的数据样本或预测天气时,应该使用机器学习。如果您想创建一个时间表,找到设施的最佳位置或最小化问题的成本,数学优化是更好的选择。

如何结合数学优化和机器学习呢?
将数学优化和机器学习结合起来是很有用的。它们有不同的优点和缺点,有些问题太复杂,不能只使用两者中的一种。它们可以相互补充。这里有四种方法和实际例子,告诉你如何将它们结合起来。

  1. 使用机器学习预测作为优化模型中的约束

首先,您使用机器学习进行预测,这些预测被用作优化问题的输入。您可以使用机器学习模型的输出设置约束。

示例:使用机器学习预测观看人数,使用它们作为输入来创建一个优化的最佳计划

假设你是一家平台的数据科学家,你向其他公司出售广告空间。广告商购买播放时间,平台根据经验猜测有多少人会看到广告商的广告。作为数据科学家,您希望以最好的方式使用广告空间。首先,使用机器学习根据历史数据预测观看数据。然后,创建一个使用观看数据为输入的优化模型。你通过观看数据来优化计划。通过这样做,你可以使平台的利润最大化。

  1. 使用优化决策作为机器学习模型中的训练特征

与方法 1 相比,这是相反的方式:首先优化模型做出决策,决策被用作机器学习模型中的特征。实际上,这种方法不太常见,因为大多数决策 (MO) 都遵循预测 (ML)。这种方式可能在特定项目中很有用。

示例:在机器学习模型中使用运输决策
数学优化在物流中有着广泛的应用。如果您使用优化来决定需要从生产工厂运送到市场的供应量,它可以节省大量时间、金钱和资源。在获得这些结果之后,您可以将它们用于机器学习问题中,例如预测特定日期每个工厂需要多少员工。

3.利用机器学习输出来确定数学优化模型的范围
除了在优化问题中直接使用机器学习输出外,您还可以选择将它们独立地结合起来。您可以在同一个项目中使用它们,但不是在同一个过程中。您可以使用机器学习输出来简化数学优化问题:您可以使用机器学习确定优化模型的范围。这里的一个额外好处是优化模型可以在更短的时间内求解。

示例:使用预测性维护和聚类来确定路由问题的范围
在这个例子中,我们来看一家修理电源箱的公司。他们的修理工数量有限,希望以最好的方式使用这些修理工。首先,您可以使用预测性维护(机器学习)来决定哪些电源箱具有最高的故障风险。然后,使用聚类(机器学习)对高风险电源箱进行聚类。聚类是因为您希望一组电源箱彼此靠近。您可以选择与可用的修理工数量相等的聚类数量。最后,通过数学优化,您可以创建每个聚类的电源箱之间的最佳路线,每个修理工都有一条路线。

  1. 利用优化来解决机器学习问题

你可以使用优化来为机器学习问题找到一个最优的参数集。机器学习和数学优化在这里是紧密结合在一起的,因为在机器学习问题中使用了优化。下面的例子表明,混合整数规划(MIP)已经证明了它在解决一个经典研究问题中的价值。

例:求解线性回归中的最佳子集选择问题

在构建回归模型时,去除不相关的特征会使模型更容易解释,并且也不容易过度拟合数据。很难找到特征的最优子集,称为最佳子集选择问题。在过去的几十年里,混合整数规划(数学优化)在速度上有了显著的提高,这使得在现有问题上测试它很有用。

最后
希望本文能启发您尝试数学优化和机器学习的有趣结合!它们适用于不同类型的问题,并且可以相互补充。除了明显的方法(使用一个的输出作为另一个的输入)之外,还有其他方法可以将它们组合起来。你可以将它们松散地结合起来,就像第三种方法一样,使用机器学习来确定优化问题的范围。或者您可以将它们紧密集成以解决研究问题,如最后一个示例所示。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
140 4
|
2天前
|
机器学习/深度学习 资源调度 算法
机器学习领域必知数学符号与概念(一)
本文介绍了一些数学符号以及这些符号的含义。
93 65
|
4天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
45 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
24天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
60 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
19天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
83 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
72 4
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
40 6
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
69 6
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
154 1