一篇文章带你了解纹理表示和卷积神经网络

简介: 打卡计算机视觉--纹理表示和卷积神经网络, 帮助快速简单的理解,适合有一定基础的计算机视觉选手。

纹理表示、卷积神经网络

纹理表示

纹理表示可以理解为大量存在的一种图像纹理特征,也可以理解为图像的一种局部特征,比如下:

如何提取纹理特征需要用到上次学到的高斯偏导核(高斯磨平+梯度提取),如下:

利用不同的高斯偏导核进行一种特征的提取,用多种高斯偏导核则可提取多种特征上的响应值,从而得到同一位置上不同特征的响应值。

第一个高斯偏导核得到关于竖直方向上的特征,最后一个高斯偏导核则可以得到圆形斑点状的特征。得到一个响应图后,将响应图求平均值后得到的数值则能表示为该高斯偏导核所对应特征的出现次数大小(不考虑特征的位置),如需要考虑位置则直接将图拉平即可。

卷积神经网络

卷积神经网络包括两部分,卷积部分以及全连接神经网络部分。

全连接神经网络

x1代表图像上的第一像素点,f1代表对每个类别的预测值,因为全连接神经网络会对每个像素值进行操作,如果图像过大则会出现非常多的权值,运算量会很大,所以全连接网络只能处理小图像,或者已经用高斯偏导核组处理后的向量。

卷积神经网络

卷积层

image-20220919222105712

和卷积的情况差不多,只不过彩图会有初始的3层深度,将卷积核与彩图重合后进行点运算的到一个值,最后得到一个特征响应图,多种特征卷积核最后会得到多张特征响应图

卷积步长

卷积完一次后向后移动的位次,可以图像尺寸、卷积核尺寸、卷积步长与最后卷积结果之间的关系,并且如果有零填充时的情况。要明白计算公式

激活层

对每张图每个点上的值进行激活函数操作,不满足的变为0

池化层

池化的作用:对每一个特征响应图独立进行,降低特征响应图组中每个特征响应图的宽度和高度,减少后续卷积层的参数的数量,降低计算资源耗费,进而控制过拟合。

作用

  • 降低响应图的宽度和高度,降低之后的运算量
  • 响应图降低相当于卷积核增大,能观测到较大的图像特征

方法

  • 最大池化:将区域内的全部值取最大值来代表整个区域
  • 平均池化:采用区域内所有值的平均值来代表整个区域

目录
相关文章
|
22天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
229 55
|
23小时前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
13 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
166 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
93 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
329 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
64 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)

热门文章

最新文章