贪心——376. 摆动序列

简介: 本专栏按照数组—链表—哈希—字符串—栈与队列—二叉树—回溯—贪心—动态规划—单调栈的顺序刷题,采用代码随想录所给的刷题顺序,一个正确的刷题顺序对算法学习是非常重要的,希望对大家有帮助

1 题目描述

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/wiggle-subsequence

2 题目示例

示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

3 题目提示

1 <= nums.length <= 1000
0 <= nums[i] <= 1000

4 思路

本题解来自代码随想录,这也是我刷题的顺序,推荐大家使用
链接:贪心——376. 摆动序列
本题要求通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
相信这么一说吓退不少同学,这要求最大摆动序列又可以修改数组,这得如何修改呢?
来分析一下,要求删除元素使其达到最大摆动序列,应该删除什么元素呢?
用示例二来举例,如图所示:
image.png

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
局部最优推出全局最优,并举不出反例,那么试试贪心!
(为方便表述,以下说的峰值都是指局部峰值)
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单—坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单—坡度上的节点。
本题代码实现中,还有一些技巧,例如统计峰值的时候,数组最左面和最右面是最不好统计的。
例如序列[2.5],它的峰值数量是2,如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。
所以可以针对序列[2.5],可以假设为[2,2.5],这样它就有坡度了即preDiff =0,如图:
image.png
针对以上情形,result初始为1(默认最右面有一个峰值),此时curDiff > 0 && preDiff <= 0,那么result++(计算了左面的峰值),最后得到的result就是2(峰值个数为2即摆动序列长度为2)
时间复杂度:O(n)
空间复杂度:O(1)

5 我的答案

// DP
class Solution {
    public int wiggleMaxLength(int[] nums) {
        // 0 i 作为波峰的最大长度
        // 1 i 作为波谷的最大长度
        int dp[][] = new int[nums.length][2];

        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.length; i++){
            //i 自己可以成为波峰或者波谷
            dp[i][0] = dp[i][1] = 1;

            for (int j = 0; j < i; j++){
                if (nums[j] > nums[i]){
                    // i 是波谷
                    dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
                }
                if (nums[j] < nums[i]){
                    // i 是波峰
                    dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
                }
            }
        }

        return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
    }
}
class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            //得到当前差值
            curDiff = nums[i] - nums[i - 1];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}
相关文章
|
6月前
|
机器学习/深度学习 算法 测试技术
【动态规划】【最长子序列】2901. 最长相邻不相等子序列 II
【动态规划】【最长子序列】2901. 最长相邻不相等子序列 II
|
6月前
|
算法 C++
【动态规划】【子序列除重】【C++算法】1987不同的好子序列数目
【动态规划】【子序列除重】【C++算法】1987不同的好子序列数目
|
6月前
|
存储 算法
《LeetCode》—— 摆动序列
《LeetCode》—— 摆动序列
|
6月前
|
Java
leetcode-376:摆动序列
leetcode-376:摆动序列
45 0
|
算法 测试技术
【学会动态规划】最长湍流子数组(23)
【学会动态规划】最长湍流子数组(23)
40 0
|
6月前
|
算法 测试技术 C#
【动态规划】【前缀和】【和式变换】100216. K 个不相交子数组的最大能量值
【动态规划】【前缀和】【和式变换】100216. K 个不相交子数组的最大能量值
【动态规划刷题 13】最长递增子序列&& 摆动序列
【动态规划刷题 13】最长递增子序列&& 摆动序列
|
人工智能
【动态规划刷题 11】等差数列划分&& 最长湍流子数组
【动态规划刷题 11】等差数列划分&& 最长湍流子数组
|
6月前
|
算法
【面试算法——动态规划 20】最长公共子序列&& 不相交的线
【面试算法——动态规划 20】最长公共子序列&& 不相交的线
|
6月前
|
算法 程序员
【算法训练-动态规划 二】【线性DP问题】连续子数组的最大和、乘积最大子数组、最长递增子序列
【算法训练-动态规划 二】【线性DP问题】连续子数组的最大和、乘积最大子数组、最长递增子序列
102 0