1 题目描述
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/n-queens
2 题目示例
示例 2:
输入:n = 1
输出:[["Q"]]
3 题目提示
1 <= n <= 9
4 思路
「N皇后问题」研究的是如何将N个皇后放置在NxN的棋盘上,并且使皇后彼此之间不能相互攻击。
皇后的走法是:可以横直斜走,格数不限。因此要求皇后彼此之间不能相互攻击,等价于要求任何两个皇后都不能在同一行、同—列以及同—条斜线上。
直观的做法是暴力枚举将N个皇后放置在N×N的棋盘上的所有可能的情况,并对每一种情况判断是否满足皇后彼此之间不相互攻击。暴力枚举的时间复杂度是非常高的,因此必须利用限制条件加以优化。
显然,每个皇后必须位于不同行和不同列,因此将N个皇后放置在N xN的棋盘上,—定是每—行有且仅有一个皇后,每一列有且仅有一个皇后,且任何两个皇后都不能在同—条斜线上。基于上述发现,可以通过回溯的方式寻找可能的解。
回溯的具体做法是:使用一个数组记录每行放置的皇后的列下标,依次在每一行放置一个皇后。每次新放置的皇后都不能和已经放置的皇后之间有攻击:即新放置的皇后不能和任何一个已经放置的皇后在同一列以及同—条斜线上,并更新数组中的当前行的皇后列下标。当N个皇后都放置完毕,则找到一个可能的解。当找到一个可能的解之后,将数组转换成表示棋盘状态的列表,并将该棋盘状态的列表加入返回列表。
由于每个皇后必须位于不同列,因此已经放置的皇后所在的列不能放置别的皇后。第一个皇后有N列可以选择,第二个皇后最多有N―1列可以选择,第三个皇后最多有N-2列可以选择(如果考虑到不能在同一条斜线上,可能的选择数量更少),因此所有可能的情况不会超过N!种,遍历这些情况的时间复杂度是O(N!)。
为了降低总时间复杂度,每次放置皇后时需要快速判断每个位置是否可以放置皇后,显然,最理想的情况是在O(1)的时间内判断该位置所在的列和两条斜线上是否已经有皇后。
为了判断—个位置所在的列和两条斜线上是否已经有皇后,使用三个集合columns、diagonals,和diagonalsg分别记录每一列以及两个方向的每条斜线上是否有皇后。
列的表示法很直观,一共有Ⅳ列,每—列的下标范围从О到N -1,使用列的下标即可明确表示每—列。
如何表示两个方向的斜线呢?对于每个方向的斜线,需要找到斜线上的每个位置的行下标与列下标之间的关系。
方向一的斜线为从左上到右下方向,同—条斜线上的每个位置满足行下标与列下标之差相等,例如(0,0)和(3,3)在同一条方向一的斜线上。因此使用行下标与列下标之差即可明确表示每—条方向一的斜线。
方向二的斜线为从右上到左下方向,同一条斜线上的每个位置满足行下标与列下标之和相等,例如 (3,0)(3,0) 和 (1,2)(1,2) 在同一条方向二的斜线上。因此使用行下标与列下标之和即可明确表示每一条方向二的斜线。
每次放置皇后时,对于每个位置判断其是否在三个集合中,如果三个集合都不包含当前位置,则当前位置是可以放置皇后的位置。
复杂度分析
- 时间复杂度:O(N!),其中N是皇后数量。
- 空间复杂度:O(N),其中N是皇后数量。空间复杂度主要取决于递归调用层数、记录每行放置的皇后的列下标的数组以及三个集合,递归调用层数不会超过N,数组的长度为N,每个集合的元素个数都不会超过N。
5 我的答案
class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> solutions = new ArrayList<List<String>>();
int[] queens = new int[n];
Arrays.fill(queens, -1);
Set<Integer> columns = new HashSet<Integer>();
Set<Integer> diagonals1 = new HashSet<Integer>();
Set<Integer> diagonals2 = new HashSet<Integer>();
backtrack(solutions, queens, n, 0, columns, diagonals1, diagonals2);
return solutions;
}
public void backtrack(List<List<String>> solutions, int[] queens, int n, int row, Set<Integer> columns, Set<Integer> diagonals1, Set<Integer> diagonals2) {
if (row == n) {
List<String> board = generateBoard(queens, n);
solutions.add(board);
} else {
for (int i = 0; i < n; i++) {
if (columns.contains(i)) {
continue;
}
int diagonal1 = row - i;
if (diagonals1.contains(diagonal1)) {
continue;
}
int diagonal2 = row + i;
if (diagonals2.contains(diagonal2)) {
continue;
}
queens[row] = i;
columns.add(i);
diagonals1.add(diagonal1);
diagonals2.add(diagonal2);
backtrack(solutions, queens, n, row + 1, columns, diagonals1, diagonals2);
queens[row] = -1;
columns.remove(i);
diagonals1.remove(diagonal1);
diagonals2.remove(diagonal2);
}
}
}
public List<String> generateBoard(int[] queens, int n) {
List<String> board = new ArrayList<String>();
for (int i = 0; i < n; i++) {
char[] row = new char[n];
Arrays.fill(row, '.');
row[queens[i]] = 'Q';
board.add(new String(row));
}
return board;
}
}