阿里云云原生实时数仓升级发布,助力企业快速构建一站式实时数仓

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 9月14日,阿里云云原生实时数仓升级发布。阿里云计算平台的产品专家分享了实时计算Flink版和Hologres构建企业级一站式实时数仓的核心能力升级及新功能解读。

布道师 890_390.jpg

当前,大数据正在从计算规模化向实时化演进,实时数仓的应用场景也越来越广泛。例如:央视春晚,可通过大屏实时统计全国的收视率观众画像多个城市正在开展的城市大脑项目, 通过 IoT 的摄像头信息,实时捕获各个城市中的交通、车辆、人流等信息进行交通监察治理银行、证券交易所等金融机构实时监控交易行为,进行反作弊反洗钱等行为的探测;电商大促场景下,可通过大屏实时展示成交额并实现毫秒级更新。除此之外,智能客服、物流跟踪、订单分析、直播质量监控等也是实时数仓的典型应用场景。由此可见,实时数据的处理与分析为越来越多的企业创造了业务价值。

实时数仓越来越重要。然而建设实时数仓时,企业却常常面临各种问题。当前实时数仓建设的痛点主要有以下三方面:首先,企业对于数据的准确性、时效性、性价比三方面都同时具有强烈需求。不但对数据实时写入能力要求高、查询延时敏感、查询维度繁多且维度不固定,而且希望兼顾明细查询和聚合查询两类不同负载,同时要求在成本上有所控制。其次,随着手机应用、小程序等场景日益增多,企业对于半结构化数据的分析需求强烈。第三,由于业务需求更新频繁,实时任务变更频繁,企业需要更加敏捷的实时数仓来适应频繁的变更。

为了解决客户建设实时数仓中面临的痛点,阿里云实时计算Flink版+Hologres实时数仓解决方案升级。

本次升级发布的新功能集中在数据写入、查询与分析、企业级能力三个方面。

数据写入:拥有实时应用场景的客户(如实时大屏、实时风控等)对于数据写入的实时性有着极高要求,要求数据写入即可见。同时,由于企业数据来源复杂,会涉及到许多的数据更新、修正的场景,进一步加大了实时写入与更新的难度。Hologres作为一站式实时数据仓库引擎,提供海量数据高性能的实时写入,数据写入即可查。同时,阿里云实时计算Flink+Hologres可通过主键提供高性能的Upsert能力,整个写入和更新过程确保Exactly Once,满足对数据的合并、更新等需求。

企业在数据写入时,还面临着数据时效性低、成本高、同步效率低等困难。本次发布的表结构变更自动同步功能解决了数据时效性问题,整库同步功能减少了资源浪费,分库分表合并同步提升了数据同步效率。

随着业务的迭代和发展,数据源的表结构变更已成为常见现象,企业需要及时修改实时同步作业以适配最新的表结构。这些操作带来了较高的运维成本,也影响了数据时效性。为解决这个问题,阿里云实时计算Flink版支持通过Catalog实现元数据的自动发现和管理,配合 CTAS (Create Table AS)语法,使用一行SQL实现数据同步和表结构的变更自动同步,降低运维成本,提升数据时效性。在实际工作场景中,分析师常要通过单张表逐一同步的方式将整个数据库同步到数仓中做进一步分析,不但浪费资源,也为上游数据库带来较大压力。针对这个问题,阿里云 Flink CDC 提供了整库同步特性,节省成本,降低数据库压力。另外,分析师也常常需要将分库分表的业务数据汇聚到一张数仓中的大表中进行分析,针对这种场景,阿里云实时计算Flink版+Hologres提供了分库分表合并同步特性,通过在 CTAS 语法支持源库和源表的正则表达式,源数据库的分表可以高效地合并同步到下游 Hologres 数仓中。

查询与分析:本次发布的Hologres实时物化视图功能优化了聚合场景,减少计算量,显著提升查询性能。JSON列式存储优化提升了半结构化数据查询和存储效率。Hologres Binlog + 阿里云实时计算Flink版支持了有状态的全链路事件实时驱动开发场景。

Hologres新版本已支持实时物化视图功能,数据在写入时即预计算,以空间换时间,提高查询效率。JSON作为一个数据单位,提供了存储上的灵活性,但限制了分析时的效率,为了访问JSON中部分节点不得不读取整个JSON数据结构,效率非常低下,存储上也很难压缩。HologresJSON列式存储优化,平衡了灵活性(Schemaless)与性能,提升数据存储压缩效率,减少数据转换等操作,提升查询效率。BinlogHologres很有特色的新能力,支持对每次数据更新的详细记录,应用在数仓层次间数据实时加工、多实例间数据同步、数据行列转换 、数据变化检测等多种场景。

企业级能力方面:Hologres提供了数据加密和脱敏、访问控制、容灾备份等能力。

除了产品功能发布外,产品专家还分享了某知名全球TOP20游戏公司的案例。该客户通过阿里云Flink版+Hologres实时数仓方案替换开源架构,简化数据处理链路,统一数仓架构,统一存储,提升查询性能,完美支撑数据分析、广告投放、实时决策等多个场景,助力业务快速增长。

点击链接查看直播内容:https://developer.aliyun.com/topic/rtdw

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
相关文章
|
25天前
|
存储 人工智能 分布式计算
湖仓实时化升级 :Uniflow 构建流批一体实时湖仓
本文整理自阿里云产品经理李昊哲在Flink Forward Asia 2024流批一体专场的分享,涵盖实时湖仓发展趋势、基于Flink搭建流批一体实时湖仓及Materialized Table优化三方面。首先探讨了实时湖仓的发展趋势和背景,特别是阿里云在该领域的领导地位。接着介绍了Uniflow解决方案,通过Flink CDC、Paimon存储等技术实现低成本、高性能的流批一体处理。最后,重点讲解了Materialized Table如何简化用户操作,提升数据查询和补数体验,助力企业高效应对不同业务需求。
414 18
湖仓实时化升级 :Uniflow 构建流批一体实时湖仓
|
1月前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
404 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
30天前
|
人工智能 关系型数据库 MySQL
AnalyticDB MySQL版:云原生离在线一体化数据仓库支持实时业务决策
AnalyticDB MySQL版是阿里云推出的云原生离在线一体化数据仓库,支持实时业务决策。产品定位为兼具数据库应用性和大数据处理能力的数仓,适用于大规模数据分析场景。核心技术包括混合负载、异构加速、智能弹性与硬件优化及AI集成,支持流批一体架构和物化视图等功能,帮助用户实现高效、低成本的数据处理与分析。通过存算分离和智能调度,AnalyticDB MySQL可在复杂查询和突发流量下提供卓越性能,并结合AI技术提升数据价值挖掘能力。
53 16
|
2月前
|
SQL 存储 缓存
EMR Serverless StarRocks 全面升级:重新定义实时湖仓分析
本文介绍了EMR Serverless StarRocks的发展路径及其架构演进。首先回顾了Serverless Spark在EMR中的发展,并指出2021年9月StarRocks开源后,OLAP引擎迅速向其靠拢。随后,EMR引入StarRocks并推出全托管产品,至2023年8月商业化,已有500家客户使用,覆盖20多个行业。 文章重点阐述了EMR Serverless StarRocks 1.0的存算一体架构,包括健康诊断、SQL调优和物化视图等核心功能。接着分析了存算一体架构的挑战,如湖访问不优雅、资源隔离不足及冷热数据分层困难等。
|
2月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 存储 分布式计算
MaxCompute近实时数仓能力升级
本文介绍了阿里云自研的离线实时一体化数仓,重点涵盖MaxCompute和Hologres两大产品。首先阐述了两者在ETL处理、AP分析及Serverless场景中的核心定位与互补关系。接着详细描述了MaxCompute在近实时能力上的升级,包括Delta Table形态、增量计算与查询支持、MCQ 2.0的优化等关键技术,并展示了其性能提升的效果。最后展望了未来在秒级数据导入、多引擎融合及更高效资源利用方面的改进方向。
|
2月前
|
SQL 存储 分布式计算
Hologres+Paimon构建一体化实时湖仓
Hologres 3.0全新升级,面向未来的一体化实时湖仓。它支持多种Table Format,提供湖仓存储、多模式计算、分析服务和Data+AI一体的能力。Hologres与Paimon结合,实现统一元数据管理、极速查询性能、增量消费及ETL功能。Dynamic Table支持流式、增量和全量三种刷新模式,满足不同业务需求,实现一份数据、一份SQL、一份计算的多模式刷新。该架构适用于高时效性要求的场景,也可用于成本敏感的数据共享场景。
|
2月前
|
存储 NoSQL Cloud Native
MongoDB云原生化:为企业开发注入高效动力
MongoDB云原生化为企业开发注入高效动力,分为三部分:1. 介绍阿里云和MongoDB的服务;2. 阿里云MongoDB解决自建模型痛点的功能,包括隔离性、海量数据处理、弹性能力及运维操作优化;3. 客户案例展示。通过云原生架构,MongoDB实现了灵活的扩展、高效的备份恢复和快速的回档能力,显著提升了企业的业务迭代速度和数据管理效率。典型客户如吉比特、莉莉丝、掌阅等受益于这些功能,实现了更稳定和高效的数据库服务。
|
2月前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
2月前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。

热门文章

最新文章