MySQL数据库中数据类型优化

简介: 本文介绍了数据库优化中关于数据类型的一些优化细节。

数据库中数据类型优化

首先我们介绍一下这个schema:

schema(发音 “skee-muh” 或者“skee-mah”,中文叫模式)是数据库的组织和结构

选择优化的数据类型

mysql支持的数据类型非常多,选择正确的数据类型对于获得高性能至关重要。不管存储那种类型的数据,下面几个简单的原则你需要记住。

  • 更小的通常更好
  • 简单就好
  • 尽量避免null

整数类型

我们有以下几种整数类型:

TINYINT SMALLINT MEDIUMINT INT BIGINT
8位 16位 24位 32位 64位

他们的存储空间范围从-2(N-1)次方到2的(N-1)次方减一。N是位数

整数类型有可选的unsigned属性,表示不允许负值,这大致可以使正数的上限提高一倍。

实数类型

实数嘛,就是带有小数部分的数字,然而,它不只是为了存储小数部分;也可以使用decimal存储比bigint还大的整数。

decimal(18,9)小数点两边各存储9个数字,一个使用9个字节;小数点前的数字使用4个字节,小数点后的数字使用4个字节,小数点本身占一个字节。

因为需要额外的空间和计算开销,所以应该尽量只在对小数进行精确计算时才使用decimal--例如存储财务数据,但是在数据量比较大的时候们可以使用bigint代替decimal,将存储的数据根据小数的位数乘以相应的倍数即可。

字符串类型

varchar

用于存储可变长的字符串,如果MySQL使用 ROW_FORMAT=FIXED创建的话,每一行都会使用定长存储,这会很浪费空间。

varchar需要使用1个或者2个额外的字节记录字符串的长度。例如:varchar(10)的列需要11个字节的存储空间。

但是由于行是变长的在update的时候可能使行变得比原来更长,这就导致需要额外的工作。例如myisam会将行拆成不同的片段存储,innodb则需要分裂页来使行可以放进页内。

char

char类型是定长的,当存储char值时。mysql会删除所有的末尾空格。

char适合存储很短的字符串,或者所有值都接近同一个长度。例:char十分适合存储密码的md5值。

对于经常变更的数据,char也比varchar好,因为定长的char类型不容易产生碎片。

BLOB和TEXT

都是为了存储很大的数据而设计的字符串数据类型,分别采用二进制和字符方式存储。

MySQL把每个blob和text值当做一个独立的对象处理。存储引擎在存储时通常会做特殊处理。当blob和text值太大时,innodb会使用专门的外部存储区域进行存储,此时每个值在行内需要1--4个字节来存储一个指针,然后在外部的存储区域存储实际的值。

BLOB和TEXT家族之间仅有的不同是BLOB类型存储的是二进制数据,没有排序规则或字符集,而text类型有字符集和排序规则。

使用枚举enum代替字符串类型

有时候可以使用枚举列来代替常用的字符串类型。枚举列可以把一些不重复的字符串存储成一个预定义的集合。mysql在存储枚举时非常紧凑,会根据列表值的数量压缩到一个或者两个字节中。mysql内部会将每个值在列表中的位置保存为整数,并且在表的.frm文件中保存“数字-字符串‘映射关系的查找表。

我们看看下面的例子:

create TABLE  enum_test(
        e ENUM('fish','apple','dog') NOT NULL
);

INSERT INTO enum_test(e) VALUES ('fish'),('dog'),('apple');
SELECT e + 0 FROM enum_test;

image-20220913161520851

SELECT e FROM enum_test;

image-20220913161622827

所以使用数字作为enum枚举常量,这种双重性很容易导致混乱,例如enum(’1‘,’2‘,’3‘)。所以尽量别这么用。

另外一个让人大吃一惊的事情是:

%E5%A4%A7%E5%90%83%E4%B8%80%E6%83%8A.jpeg

枚举字段是按照内部存储的整数而不是定义的字符串进行排序的。

枚举最不好的地方是,字符串列表是固定的,添加或删除字符串必须使用ALTER TABLE 。因此对于一系列未来可能改变的字符串,枚举并不是一个好主意。

日期和时间类型

DATETIME

这个类型可以保存大范围的值,从1001年到9999年,精度为秒,他把日期和时间封装到格式为YYYYMMDDHHMMSS的整数中,与时区无关。使用8个字节的存储空间。

TIMRSTAMP

就像它的名字一样TIMESTAMP类型保存了从1970年1月1日午夜(格林尼治标准时间)以来的秒数。它和unix时间戳相同。timestamp值使用4个字节的存储空间,因此他的范围比datetime 小的多。只能表示从1970到2038年MySQL提供了FROM_UNIXTIME()函数把Unix时间戳转换为日期,并且提供Unix_TIMESTAMP()函数把日期转换为Unix时间戳。

位数据类型

BIT

mysql把bit当做字符串类型,而不是数字类型,当检索bit(1)的值时,结果是一个包含二进制0或1 的字符串,而不是ascii码的0,1。

SET

如果需要保存很多true/false值,可以考虑合并这些列到一个set数据类型,他在mysql内部是以一系列打包的位的集合来表示的。这样可以有效的利用空间,并且MySQL有像FIND_IN_SET()和FIELD()这样的函数,方便地在查询中使用。

它的主要缺点是改变列的定义的代价较高:需要alter TABLE,这对大表来说是非常昂贵的操作。

选择标识符

特殊类型数据

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
2月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
6月前
|
关系型数据库 MySQL 数据库连接
Django数据库配置避坑指南:从初始化到生产环境的实战优化
本文介绍了Django数据库配置与初始化实战,涵盖MySQL等主流数据库的配置方法及常见问题处理。内容包括数据库连接设置、驱动安装、配置检查、数据表生成、初始数据导入导出,并提供真实项目部署场景的操作步骤与示例代码,适用于开发、测试及生产环境搭建。
273 1
|
6月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
265 0
|
2月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
205 6
|
3月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
601 5
|
4月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
224 6
|
5月前
|
机器学习/深度学习 SQL 运维
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
174 4
|
5月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
144 2
|
5月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
219 0

热门文章

最新文章

推荐镜像

更多