开发指南—Sequence—使用限制

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 本文将介绍使用Sequence过程中的注意事项及问题处理的方法。

限制与注意事项

在使用Sequence时,您需要注意如下事项:

  • 转换Sequence类型时,必须指定START WITH起始值。
  • 单元化Group Sequence不支持作为源或目标的类型转换,也不支持起始值以外的参数修改。
  • 属于同一个全局唯一数字序列分配空间的每个单元化Group Sequence ,必须指定相同的单元数量和不同的单元索引。
  • 在PolarDB-X非拆分模式库(即后端仅关联一个已有的RDS物理库)、或拆分模式库中仅有单表(即所有表都是单库单表,且无广播表)的场景下执行INSERT时, PolarDB-X会自动优化并直接下推语句,绕过优化器中分配Sequence值的部分。此时INSERT INTO ... VALUES (seq.nextval, ...)这种用法不支持,建议使用后端RDS/MySQL自增列机制代替。
  • 如果将指定分库的Hint用在INSERT语句上,比如INSERT INTO ... VALUES ... 或INSERT INTO ... SELECT ...,且目标表使用了Sequence,则PolarDB-X会绕过优化器直接下推语句,使Sequence不生效,目标表最终会使用后端RDS/MySQL表中的自增机制生成id。
  • 必须对同一个表采用一种统一的方式分配自增id:或者依赖于Sequence,或者依赖于后端RDS/MySQL表的自增列;应避免两种机制混用,否则很可能会造成id冲突(INSERT时产生重复id)的情况,且难于排查。
  • 将Time-based Sequence用于表中自增列时,该列必须使用BIGINT类型。

如何处理主键冲突

如果直接在RDS中写入了数据,而对应的主键值不是PolarDB-X生成的Sequence值,那么后续让PolarDB-X自动生成主键写入数据库,可能会和这些数据发生主键冲突,您可以通过如下步骤解决此问题:

  1. 通过SHOW SEQUENCES来查看当前已有Sequence。AUTO_SEQ_ 开头的Sequence是隐式Sequence(创建表时加上AUTO_INCREMENT参数的字段产生的Sequence)。请在命令行输入如下代码:
mysql> SHOW SEQUENCES;
  1. 返回结果如下:
+---------------------+-------+--------------+------------+-----------+-------+-------+

| NAME | VALUE | INCREMENT_BY | START_WITH | MAX_VALUE | CYCLE | TYPE |
+---------------------+-------+--------------+------------+-----------+-------+-------+
| AUTO_SEQ_xkv_t_item | 0 | N/A | N/A | N/A | N/A | GROUP |
| AUTO_SEQ_xkv_shard | 0 | N/A | N/A | N/A | N/A | GROUP |
+---------------------+-------+--------------+------------+-----------+-------+-------+
2 rows in set (0.04 sec)
  1. 若xkv_t_item表有冲突,并且xkv_t_item表主键是ID,那么从PolarDB-X获取这个表最大主键值。请在命令行输入如下代码:
mysql> SELECT MAX(id) FROM xkv_t_item;
  1. 返回结果如下:
+-----------+ 
| MAX(id) |
+-----------+
| 8231 |
+-----------+
1 row in set (0.01 sec)
  1. 更新Sequence表中对应的值,这里更新成比8231要大的值,比如9000,更新完成后,后续插入语句生成的自增主键将不再报错。请在命令行输入如下代码:
mysql> ALTER SEQUENCE AUTO_SEQ_xkv_t_item START WITH 9000;
相关文章
|
3天前
|
存储 人工智能 安全
AI 越智能,数据越危险?
阿里云提供AI全栈安全能力,为客户构建全链路数据保护体系,让企业敢用、能用、放心用
|
6天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
5天前
|
数据采集 人工智能 自然语言处理
3分钟采集134篇AI文章!深度解析如何通过云无影AgentBay实现25倍并发 + LlamaIndex智能推荐
结合阿里云无影 AgentBay 云端并发采集与 LlamaIndex 智能分析,3分钟高效抓取134篇 AI Agent 文章,实现 AI 推荐、智能问答与知识沉淀,打造从数据获取到价值提炼的完整闭环。
395 93
|
6天前
|
SQL 人工智能 自然语言处理
Geo优化SOP标准化:于磊老师的“人性化Geo”体系如何助力企业获客提效46%
随着生成式AI的普及,Geo优化(Generative Engine Optimization)已成为企业获客的新战场。然而,缺乏标准化流程(Geo优化sop)导致优化效果参差不齐。本文将深入探讨Geo专家于磊老师提出的“人性化Geo”优化体系,并展示Geo优化sop标准化如何帮助企业实现获客效率提升46%的惊人效果,为企业在AI时代构建稳定的流量护城河。
395 156
Geo优化SOP标准化:于磊老师的“人性化Geo”体系如何助力企业获客提效46%
|
5天前
|
数据采集 缓存 数据可视化
Android 无侵入式数据采集:从手动埋点到字节码插桩的演进之路
本文深入探讨Android无侵入式埋点技术,通过AOP与字节码插桩(如ASM)实现数据采集自动化,彻底解耦业务代码与埋点逻辑。涵盖页面浏览、点击事件自动追踪及注解驱动的半自动化方案,提升数据质量与研发效率,助力团队迈向高效、稳定的智能化埋点体系。(238字)
284 158
|
13天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。