开发指南—DAL语句—EXPLAIN

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 该语句用于解释SQL语句的执行计划,包括SELECT、DELETE、INSERT、REPLACE或UPDATE语句。

语法

获取SQL计划信息:


EXPLAIN
{LOGICALVIEW | LOGIC | SIMPLE | DETAIL | EXECUTE | PHYSICAL | OPTIMIZER | SHARDING
 | COST | ANALYZE | BASELINE | JSON_PLAN | ADVISOR} 
 {SELECT statement | DELETE statement | INSERT statement | REPLACE statement| UPDATE statement}

示例

  • explain语句:展示基本的SQL执行计划,该执行计划是算子组成,主要体现SQL在CN上的整个执行过程。
mysql> explain select count(*) from lineitem group by L_ORDERKEY;

+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count()="count()") |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`") |
| HitCache:false | |
| TemplateId: 5819c807 |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
  • 其中,HitCache标记该查询是否命中PlanCache,取值为false or trueTemplateId表示对该计划的标识,具有全局唯一性。
  • explain logicalview语句:展示LogicalView所表示的下推SQL在DN上的执行计划。
mysql> explain LOGICALVIEW select  mysql> explain select logialview count(*) from lineitem group by L_ORDERKEY;
+----------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+----------------------------------------------------------+
| Project(count()="count()") |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())") |
| Gather(concurrent=true) |
| LogicalView |
| MysqlAgg(group="L_ORDERKEY", count(*)="COUNT()") |
| MysqlTableScan(name=[ads, lineitem]) |
| HitCache:true |
| Source:PLAN_CACHE |
| TemplateId: 5819c807
  • explain execute语句:表示下推SQL在mysql的执行情况,这个语句和mysql的explain语句同义。通过该语句可以查看下推SQL在DN上有没有使用索引,有没有做全表扫描。
mysql> explain EXECUTE  select  count(*) from lineitem group by L_ORDERKEY;
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
| 1 | SIMPLE | lineitem | NULL | index | PRIMARY | PRIMARY | 8 | NULL | 1 | 100 | Using index; Using temporary; Using filesort |
+----+-------------+----------+------------+-------+---------------+---------+---------+-----+------+----------+----------------------------------------------+
1 row in set (0.24 sec)
  • explain sharding语句:展示当前查询在DN上扫描的物理分片情况。
mysql> explain sharding  select  count(*) from lineitem group by L_ORDERKEY;
+---------------+----------------------------------+-------------+-----------+-----------+
| LOGICAL_TABLE | SHARDING | SHARD_COUNT | BROADCAST | CONDITION |
+---------------+----------------------------------+-------------+-----------+-----------+
| lineitem | [000000-000003].lineitem_[00-15] | 16 | false | |
+---------------+----------------------------------+-------------+-----------+-----------+
1 row in set (0.04 sec)
  • explain cost语句:相对于explain语句,除了展示执行计划以外,还会显示各个算子基于统计信息估算的代价,以及这条查询被优化器识别的WORKLOAD。
mysql> explain COST  select  count(*) from lineitem group by L_ORDERKEY;
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count()="count()"): rowcount = 2508.0, cumulative cost = value = 2.4867663E7, cpu = 112574.0, memory = 88984.0, io = 201.0, net = 4.75, id = 182 |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())"): rowcount = 2508.0, cumulative cost = value = 2.4867662E7, cpu = 112573.0, memory = 88984.0, io = 201.0, net = 4.75, id = 180 |
| Gather(concurrent=true): rowcount = 2508.0, cumulative cost = value = 2.4860069E7, cpu = 105039.0, memory = 29796.0, io = 201.0, net = 4.75, id = 178 |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`"): rowcount = 2508.0, cumulative cost = value = 2.4860068E7, cpu = 105038.0, memory = 29796.0, io = 201.0, net = 4.75, id = 109 |
| HitCache:true |
| Source:PLAN_CACHE |
| WorkloadType: TP |
| TemplateId: 5819c807
  • explain analyze语句:相对于explain cost语句,除了显示各个算子基于统计信息估算的代价以外,该语句可以收集真实运行过程中算子输出的rowCount等信息。
mysql> explain ANALYZE  select  count(*) from lineitem group by L_ORDERKEY;
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| LOGICAL EXECUTIONPLAN |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Project(count()="count()"): rowcount = 2508.0, cumulative cost = value = 2.4867663E7, cpu = 112574.0, memory = 88984.0, io = 201.0, net = 4.75, actual time = 0.001 + 0.000, actual rowcount = 2506, actual memory = 0, instances = 1, id = 182 |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())"): rowcount = 2508.0, cumulative cost = value = 2.4867662E7, cpu = 112573.0, memory = 88984.0, io = 201.0, net = 4.75, actual time = 0.000 + 0.000, actual rowcount = 2506, actual memory = 0, instances = 1, id = 180 |
| Gather(concurrent=true): rowcount = 2508.0, cumulative cost = value = 2.4860069E7, cpu = 105039.0, memory = 29796.0, io = 201.0, net = 4.75, actual time = 0.000 + 0.000, actual rowcount = 0, actual memory = 0, instances = 0, id = 178 |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`"): rowcount = 2508.0, cumulative cost = value = 2.4860068E7, cpu = 105038.0, memory = 29796.0, io = 201.0, net = 4.75, actual time = 0.030 + 0.025, actual rowcount = 10000, actual memory = 0, instances = 0, id = 109 |
| HitCache:true |
| Source:PLAN_CACHE |
| TemplateId: 5819c807 |
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
7 rows in set (1.08 sec)
  • explain physical语句:展示查询在运行过程中执行模式、各个执行片段(Fragment)的依赖关系和并行度。该查询被识别为单机单线程计划模式(TP_LOCAL),执行计划被分为三个片段Fragment-0、Fragment-1和Fragment-2,先做预聚合再做最终的聚合计算,每个片段的执行度可以不同。
mysql> explain physical   select  count(*) from lineitem group by L_ORDERKEY;
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: TP_LOCAL |
| Fragment 0 dependency: [] parallelism: 4 |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].lineitem_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem` AS `lineitem` GROUP BY `L_ORDERKEY`") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER L_ORDERKEY, BIGINT count(*))) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Project(count()="count()") |
| HashAgg(group="L_ORDERKEY", count()="SUM(count())") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER L_ORDERKEY, BIGINT count(*))) |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
11 rows in set (0.10 sec)
  • explain advisor语句:主要是会基于统计信息,分析当前查询的执行计划,给用户推荐可以加速查询的全局二级索引。
mysql> explain advisor   select  count(*) from lineitem group by L_ORDERKEY \G;
1. row **
IMPROVE_VALUE: 4.4%
IMPROVE_CPU: 340.8%
IMPROVE_MEM: 0.0%
IMPROVE_IO: 1910.0%
IMPROVE_NET: 0.0%
BEFORE_VALUE: 2.48676627E7
BEFORE_CPU: 112573.7
BEFORE_MEM: 88983.8
BEFORE_IO: 201
BEFORE_NET: 4.7
AFTER_VALUE: 2.38256249E7
AFTER_CPU: 25536
AFTER_MEM: 88983.8
AFTER_IO: 10
AFTER_NET: 4.7
ADVISE_INDEX: ALTER TABLE `ads`.`lineitem` ADD GLOBAL INDEX `__advise_index_gsi_lineitem_L_ORDERKEY`(`L_ORDERKEY`) DBPARTITION BY HASH(`L_ORDERKEY`) TBPARTITION BY HASH(`L_ORDERKEY`) TBPARTITIONS 4;
NEW_PLAN:
Project(count()="count()")
HashAgg(group="L_ORDERKEY", count()="SUM(count())")
Gather(concurrent=true)
IndexScan(tables="[000000-000003].lineitem__what_if_gsi_L_ORDERKEY_[00-15]", shardCount=16, sql="SELECT `L_ORDERKEY`, COUNT() AS `count()` FROM `lineitem__what_if_gsi_L_ORDERKEY` AS `lineitem__what_if_gsi_L_ORDERKEY` GROUP BY `L_ORDERKEY`")
INFO: GLOBAL_INDEX
1 row in set (0.13 sec)
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3天前
|
存储 人工智能 安全
AI 越智能,数据越危险?
阿里云提供AI全栈安全能力,为客户构建全链路数据保护体系,让企业敢用、能用、放心用
|
6天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
5天前
|
数据采集 人工智能 自然语言处理
3分钟采集134篇AI文章!深度解析如何通过云无影AgentBay实现25倍并发 + LlamaIndex智能推荐
结合阿里云无影 AgentBay 云端并发采集与 LlamaIndex 智能分析,3分钟高效抓取134篇 AI Agent 文章,实现 AI 推荐、智能问答与知识沉淀,打造从数据获取到价值提炼的完整闭环。
395 93
|
6天前
|
SQL 人工智能 自然语言处理
Geo优化SOP标准化:于磊老师的“人性化Geo”体系如何助力企业获客提效46%
随着生成式AI的普及,Geo优化(Generative Engine Optimization)已成为企业获客的新战场。然而,缺乏标准化流程(Geo优化sop)导致优化效果参差不齐。本文将深入探讨Geo专家于磊老师提出的“人性化Geo”优化体系,并展示Geo优化sop标准化如何帮助企业实现获客效率提升46%的惊人效果,为企业在AI时代构建稳定的流量护城河。
395 156
Geo优化SOP标准化:于磊老师的“人性化Geo”体系如何助力企业获客提效46%
|
5天前
|
数据采集 缓存 数据可视化
Android 无侵入式数据采集:从手动埋点到字节码插桩的演进之路
本文深入探讨Android无侵入式埋点技术,通过AOP与字节码插桩(如ASM)实现数据采集自动化,彻底解耦业务代码与埋点逻辑。涵盖页面浏览、点击事件自动追踪及注解驱动的半自动化方案,提升数据质量与研发效率,助力团队迈向高效、稳定的智能化埋点体系。(238字)
284 158
|
13天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。