从一个案例深入剖析InnoDB隐式锁和可见性判断(1)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 从一个案例深入剖析InnoDB隐式锁和可见性判断

一、问题抛出

最近遇到一个问题,得到栈如下(5.6.25):

image.png

出现这个问题的时候只存在一个读写事务,那就是本事务。对这里的红色部分比较感兴趣,但是这里不是所有的内容都和这个问题相关,主要还是围绕可见性判断和隐式锁判定进行,算是我的思考过程。但是对Innodb认知水平有限,如有误导请谅解。使用的源码版本5.7.29。

二、read view 简述

关于read view说明的文章已经很多了,我这里简单记录一下我学习的地方。一致性读取(consistent read),根据隔离级别的不同,会在不同的时机建立read view,如下:

  • RR 事务的第一个select命令发起的时候建立read view,直到事务提交释放
  • RC 事务的每一个select都会单独建立read view

有了read view 就能够对每行数据的可见性进行判断了,下面是read view中的关键属性

  • m_up_limit_id:如果行的trx id 小于了m_up_limit_id则不可见。
  • m_low_limit_id:如果行的trx id 大于了m_low_limit_id则可见。
  • m_ids:是用于记录建立read view时刻的读写事务的vector数组,用于对于m_up_limit_id和m_low_limit_id之间的trx需要根据它来进行判定,是否处于活跃状态。
  • m_low_limit_no则用于记录建立read view时刻的最小trx no,主要用于purge线程判断清理undo使用。

如何拿到值得具体可以参见附录,而对于可见性的判断我们可以参考如下函数:

/** Check whether the changes by id are visible.
 @param[in] id transaction id to check against the view
 @param[in] name table name
 @return whether the view sees the modifications of id. */
 bool changes_visible(
  trx_id_t  id,
  const table_name_t& name) const
  MY_ATTRIBUTE((warn_unused_result))
 {
  ut_ad(id > 0);
  if (id < m_up_limit_id || id == m_creator_trx_id) { //小于 可见
   return(true);
  }
  check_trx_id_sanity(id, name);
  if (id >= m_low_limit_id) { //大于不可见
   return(false);
  } else if (m_ids.empty()) { //如果之间的 active 为空 则可见 
   return(true);
  }
  const ids_t::value_type* p = m_ids.data();
  return(!std::binary_search(p, p + m_ids.size(), id)); //否则比较本trx id 是否在这之中,如果在不可以见,反之可见
 }

三、关于可见性判断的几个问题

1、有大量的删除行,且已经提交,但是没有被purge线程清理

这种情况由于大量删除行(或者update)并且已经提交,但是由于有长时间的select语句导致read view记录的状态也比较陈旧,因此根据m_low_limit_no的判断purge线程是不能清理一些比较老旧的undo的,因此这会导致一个问题,如果这些del flag的记录会存在于逻辑记录链表内部,因此其他select扫描的时候回根据next offset扫描到,但是根据可见性判断条件这些del flag的记录trx id小于本select语句的read view 的 m_up_limit_id,因此是可见的debug如下:

387             return(view->changes_visible(trx_id, index->table->name));

(gdb) p view->changes_visible(trx_id, index->table->name)
$14 = true


但是因为已经标记为del flag因此会做跳过处理如下:

row_search_mvcc:
if (rec_get_deleted_flag(rec, comp)) {
/ The record is delete-marked: we can skip it /
...
goto next_rec;

也就是实际上在长时间read view的“保护”下,我们的undo不能清理,并且del flag不能清理还保存在block的逻辑链表中,扫描的时候会实际扫描到,只是做了跳过处理。因此会出现如下现象

image.png

这就是上面说的原因,虽然没有数据了,但是查询依旧很慢。

2、大量删除,还未提交

那么select扫描的时候会根据next offset 扫描到,但是由于read view 判断这些数据的trx id 位于 m_up_limit_id和m_low_limit_id之间,需要根据事务是否活跃(read view的m_ids,显然这里是活跃的)通过undo构建其前印象,如下判断:

lock_clust_rec_cons_read_sees
trx_id_t trx_id = row_get_rec_trx_id(rec, index, offsets);
return(view->changes_visible(trx_id, index->table->name));
3、using index也可能回表

我们知道如果执行计划使用到using index那么不会回表去取主键的数据,使用整个二级索引即可。但是这里有一种特殊情况,这里进行描述。

对于二级索引而言,因为row记录不包含trx id和undo ptr两个伪列,那么其可见性判断和前的印象构建均需要回表获取主键的记录,当然可见性判断可以先根据本二级索引page的max trx id是否小于read view的m_up_limit_id来进行第一次粗略过滤,那么可见性判断的可能性就低很多,如果通过了这个比对,那么剩余精确判断还是需要回表通过主键来比对才行,如下:

  • 对于二级索引回表操作来讲,精确的可见性判断放到了回表后的lock_clust_rec_cons_read_sees函数上,关于二级索引的回表,参考附录。
  • 对于不回表访问(using index),通过了粗略判断后(lock_sec_rec_cons_read_sees),如果遇到需要精确的可见性判断,那么也是要回表的,原因前面解释了(row记录不包含trx id和undo ptr),参考附录。

对于这个问题我们可以简单的做如下的测试,当然需要打断点才行:

测试表如下:
mysql> show create table testimp4 \G
1. row **
Table: testimp4
Create Table: CREATE TABLE `testimp4` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
`d` varchar(200) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `b` (`b`),
KEY `d` (`d`)
) ENGINE=InnoDB AUTO_INCREMENT=10000 DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from testimp4;
+------+------+------+------------------------------------+
| id | a | b | d |
+------+------+------+------------------------------------+
| 5 | 5 | 300 | NULL |
| 6 | 7000 | 7700 | 1124 |
| 11 | 7000 | 7700 | 1124 |
| 12 | 7000 | 7700 | 1124 |
| 13 | 2900 | 1800 | NULL |
| 14 | 2900 | 1800 | NULL |
| 1000 | 88 | 1499 | NULL |
| 4000 | 6000 | 5904 | iiiafsafasfihhhccccchhhigggofgo111 |
| 4001 | 7000 | 7700 | 1124454555 |
| 9999 | 9999 | 9999 | a |
+------+------+------+------------------------------------+
10 rows in set (0.00 sec)

对于下列语句的执行话是:

mysql> desc select b from testimp4  where b=300;
+----+-------------+----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | testimp4 | NULL | ref | b | b | 5 | const | 1 | 100.00 | Using index |
+----+-------------+----------+------------+------+---------------+------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

我们做如下语句:

T1

T2

begin;delete from testimp4 where id=5;(不提交)



select b from testimp4 where b=300;(这里是需要回表的)

这里显然T2(5 ,5 ,300 ,NULL )的这条记录已经被T1删除了,但是没有提交,T2首先判断二级索引b上这行数据所在的page其max trx id是否小于本select语句的read view的m_up_limit_id,显然这不成立,因为T1还会处于活跃状态,然后就进入了回表判断流程。栈如下:

#0  lock_clust_rec_cons_read_sees (rec=0x7fff060980a8 "\200", index=0x7ffec0499330, offsets=0x7fffe8399a70, view=0x33b1368)
at /home/mysql/soft/percona-server-5.7.29-32/storage/innobase/lock/lock0lock.cc:369
#1 0x0000000001afbca4 in Row_sel_get_clust_rec_for_mysql::operator() (this=0x7fffe839a2d0, prebuilt=0x7ffec80c97a0, sec_index=0x7ffec049a2c0, rec=0x7fff060a008c "\200",
thr=0x7ffec80c9f88, out_rec=0x7fffe839a310, offsets=0x7fffe839a2e8, offset_heap=0x7fffe839a2f0, vrow=0x0, mtr=0x7fffe8399d90)
at /home/mysql/soft/percona-server-5.7.29-32/storage/innobase/row/row0sel.cc:3763
#2 0x0000000001b00a94 in row_search_mvcc (buf=0x7ffec80c8a00 <incomplete sequence \375>, mode=PAGE_CUR_GE, prebuilt=0x7ffec80c97a0, match_mode=1, direction=0)
at /home/mysql/soft/percona-server-5.7.29-32/storage/innobase/row/row0sel.cc:6051



            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
安全 Linux 网络安全
/var/log/secure日志详解
Linux系统的 `/var/log/secure` 文件记录安全相关消息,包括身份验证和授权尝试。它涵盖用户登录(成功或失败)、`sudo` 使用、账户锁定解锁及其他安全事件和PAM错误。例如,SSH登录成功会显示&quot;Accepted password&quot;,失败则显示&quot;Failed password&quot;。查看此文件可使用 `tail -f /var/log/secure`,但通常只有root用户有权访问。
3675 4
|
JSON 前端开发 数据格式
全面拥抱FastApi —优雅的返回异常错误
全面拥抱FastApi —优雅的返回异常错误
|
Ubuntu
Ubuntu 20.04 多网卡路由规则配置
Ubuntu 20.04 多网卡路由规则配置
5277 0
|
11月前
|
存储 关系型数据库 MySQL
什么是索引下推优化?
索引条件下推优化(ICP)是MySQL 5.6引入的查询优化技术。未使用ICP时,存储引擎通过索引检索数据返回给MySQL Server进行过滤;使用ICP后,MySQL Server将部分判断条件下推给存储引擎,减少不必要的回表查询和数据传输,从而提高查询性能。适用于range、ref等场景,支持InnoDB和MyISAM,但不支持子查询。默认开启,可通过`SET optimizer_switch = &#39;index_condition_pushdown=off&#39;;`关闭。
345 4
什么是索引下推优化?
|
关系型数据库 分布式数据库 数据库
【PolarDB开源】PolarDB资源隔离技术:在多租户环境中的应用与优化
【5月更文挑战第29天】PolarDB,阿里云的云原生数据库,在多租户环境中通过逻辑(Schema/Partition隔离)和物理(分布式存储计算节点)隔离保障数据安全和资源独占。它支持动态资源分配,适应不同租户需求,处理大规模并发,提供租户管理及数据访问控制功能。通过优化资源分配算法、提升事务处理能力和强化监控告警,PolarDB确保性能和稳定性,满足多租户的高效数据库服务需求。
452 1
|
11月前
|
人工智能 文字识别 数据挖掘
MarkItDown:微软开源的多格式转Markdown工具,支持将PDF、Word、图像和音频等文件转换为Markdown格式
MarkItDown 是微软开源的多功能文档转换工具,支持将 PDF、PPT、Word、Excel、图像、音频等多种格式的文件转换为 Markdown 格式,具备 OCR 文字识别、语音转文字和元数据提取等功能。
2351 9
MarkItDown:微软开源的多格式转Markdown工具,支持将PDF、Word、图像和音频等文件转换为Markdown格式
|
存储 Linux 网络安全
|
开发者 Python
Django的信号机制:实现应用间的通信与响应
【4月更文挑战第15天】Django信号机制实现跨组件通信,基于订阅/发布模式,允许在事件(如模型保存、删除)发生时触发自定义函数。内置信号如`pre_save`、`post_save`,也可自定义信号。使用包括定义信号、连接处理器和触发信号。常用于模型操作监听、第三方应用集成和跨应用通信。注意避免滥用和保证处理器健壮性。信号机制提升代码可维护性和扩展性。
|
Nacos
这个错误信息看起来像是Nacos在停止服务时出现了问题。
这个错误信息看起来像是Nacos在停止服务时出现了问题。
170 1