【深度学习前沿应用】文本生成

简介: 【自然语言处理(NLP)】文本生成,基于百度飞桨开发,参考于《机器学习实践》所作。

【深度学习前沿应用】文本生成


作者简介:在校大学生一枚,C/C++领域新星创作者,华为云享专家,阿里云专家博主,腾云先锋(TDP)成员,云曦智划项目总负责人,全国高等学校计算机教学与产业实践资源建设专家委员会(TIPCC)志愿者,以及编程爱好者,期待和大家一起学习,一起进步~
.
博客主页ぃ灵彧が的学习日志
.
本文专栏人工智能
.
专栏寄语:若你决定灿烂,山无遮,海无拦
.
在这里插入图片描述

前言

什么是文本生成?

在自然语言处理领域,文本生成任务是指根据给定的输入,自动生成对应的输出,典型的任务包含:机器翻译、智能问答等。文本生成任务在注意力机制提出之后取得了显著的效果,尤其是在2018年基于多头注意力机制的Transformer(原理如下图1所示)在机器翻译领域取得当时最优效果时,基于Transformer的文本生成任务也进入了新的繁荣时期。

在这里插入图片描述

本实验的目的是演示如何使用经典的Transformer实现英-中机器翻译,实验平台为百度AI Studio,实验环境为Python3.7,Paddle2.0。


一、数据加载及预处理


(一)、数据加载

本实验选用开源的小型英-中翻译CMN数据集,该数据集中包含样本总数24360条,均为短文本,部分数据展示如下图2所示:

在这里插入图片描述

不同于图像处理,在处理自然语言时,需要指定文本的长度,便于进行批量计算,因此,在数据预处理阶段,应该先统计数据集中文本的长度,然后指定一个恰当的值,进行统一处理。


  1. 导入相关包
import paddle
import paddle.nn.functional as F
import re
import numpy as np

print(paddle.__version__)
# cpu/gpu环境选择,在 paddle.set_device() 输入对应运行设备。
# device = paddle.set_device('gpu')

  1. 统计数据集中句子的长度等信息
# 统计数据集中句子的长度等信息
lines =  open('data/data78721/cmn.txt','r',encoding='utf-8').readlines()
print(len(lines))
datas = []
dic_en = {}
dic_cn = {}
for line in lines:
    ll = line.strip().split('\t')
    if len(ll)<2:
        continue
    datas.append([ll[0].lower().split(' ')[1:-1],list(ll[1])])
    # print(ll[0])
    if len(ll[0].split(' ')) not in dic_en:
        dic_en[len(ll[0].split(' '))] = 1
    else:
        dic_en[len(ll[0].split(' '))] +=1
    if len(ll[1]) not in dic_cn:
        dic_cn[len(ll[1])] = 1
    else:
        dic_cn[len(ll[1])] +=1
keys_en = list(dic_en.keys())
keys_en.sort()
count = 0
# print('英文长度统计:')
for k in keys_en:
    count += dic_en[k]
    # print(k,dic_en[k],count/len(lines))

keys_cn = list(dic_cn.keys())
keys_cn.sort()
count = 0
# print('中文长度统计:')
for k in keys_cn:
    count += dic_cn[k]
    # print(k,dic_cn[k],count/len(lines))
 
en_length = 10
cn_length = 10

(二)、构建词表

对于中英文,需要分别构建词表,进行词向量学习,除此之外,还需要在每个词表中加入开始符号、结束符合以及填充符号:

# 构建中英文词表
en_vocab = {}
cn_vocab = {}

en_vocab['<pad>'], en_vocab['<bos>'], en_vocab['<eos>'] = 0, 1, 2
cn_vocab['<pad>'], cn_vocab['<bos>'], cn_vocab['<eos>'] = 0, 1, 2
en_idx, cn_idx = 3, 3
for en, cn in datas:
    # print(en,cn)
    for w in en:
        if w not in en_vocab:
            en_vocab[w] = en_idx
            en_idx += 1
    for w in cn:
        if w not in cn_vocab:
            cn_vocab[w] = cn_idx
            cn_idx += 1

print(len(list(en_vocab)))
print(len(list(cn_vocab)))
'''
英文词表长度:6057
中文词表长度:3533
'''

(三)、创建指定数据格式

需要将输入英文与输出中文封装为指定格式,即为编码器端输入添加结束符号并填充至固定长度,为解码器输入添加开始、结束符号并填充至固定长度,解码器端输出的正确答案应该只添加结束符号并且填充至固定长度。

padded_en_sents = []
padded_cn_sents = []
padded_cn_label_sents = []
for en, cn in datas:
    if len(en)>en_length:
        en = en[:en_length]
    if len(cn)>cn_length:
        cn = cn[:cn_length]
    padded_en_sent = en + ['<eos>'] + ['<pad>'] * (en_length - len(en))
    padded_en_sent.reverse()

    padded_cn_sent = ['<bos>'] + cn + ['<eos>'] + ['<pad>'] * (cn_length - len(cn))
    padded_cn_label_sent = cn + ['<eos>'] + ['<pad>'] * (cn_length - len(cn) + 1)
    
    padded_en_sents.append(np.array([en_vocab[w] for w in padded_en_sent]))
    padded_cn_sents.append(np.array([cn_vocab[w] for w in padded_cn_sent]) )
    padded_cn_label_sents.append(np.array([cn_vocab[w] for w in padded_cn_label_sent]))

train_en_sents = np.array(padded_en_sents)
train_cn_sents = np.array(padded_cn_sents)
train_cn_label_sents = np.array(padded_cn_label_sents)
 
print(train_en_sents.shape)
print(train_cn_sents.shape)
print(train_cn_label_sents.shape)

二、模型配置


(一)、定义网络超参数

embedding_size = 128
hidden_size = 512
num_encoder_lstm_layers = 1
en_vocab_size = len(list(en_vocab))
cn_vocab_size = len(list(cn_vocab))
epochs = 20
batch_size = 16

(二)、定义编码器

# encoder: simply learn representation of source sentence
class Encoder(paddle.nn.Layer):
    def __init__(self,en_vocab_size, embedding_size,num_layers=2,head_number=2,middle_units=512):
        super(Encoder, self).__init__()
        self.emb = paddle.nn.Embedding(en_vocab_size, embedding_size,)
        """
        d_model (int) - 输入输出的维度。
        nhead (int) - 多头注意力机制的Head数量。
        dim_feedforward (int) - 前馈神经网络中隐藏层的大小。
        """
        encoder_layer = paddle.nn.TransformerEncoderLayer(embedding_size, head_number, middle_units)
        self.encoder = paddle.nn.TransformerEncoder(encoder_layer, num_layers) 

    def forward(self, x):
        x = self.emb(x)
        en_out = self.encoder(x)
        return en_out

(三)、定义解码器

class Decoder(paddle.nn.Layer):
    def __init__(self,cn_vocab_size, embedding_size,num_layers=2,head_number=2,middle_units=512):
        super(Decoder, self).__init__()
        self.emb = paddle.nn.Embedding(cn_vocab_size, embedding_size)
        
        decoder_layer = paddle.nn.TransformerDecoderLayer(embedding_size, head_number, middle_units)
        self.decoder = paddle.nn.TransformerDecoder(decoder_layer, num_layers) 
   
        # for computing output logits
        self.outlinear =paddle.nn.Linear(embedding_size, cn_vocab_size)

    def forward(self, x,  encoder_outputs):
        x = self.emb(x)
        # dec_input, enc_output,self_attn_mask,  cross_attn_mask
        de_out = self.decoder(x, encoder_outputs)
        output = self.outlinear(de_out)
        output = paddle.squeeze(output)
        return  output

三、模型训练

encoder = Encoder(en_vocab_size, embedding_size)
decoder = Decoder(cn_vocab_size, embedding_size)

opt = paddle.optimizer.Adam(learning_rate=0.0001,
                            parameters=encoder.parameters() + decoder.parameters())

for epoch in range(epochs):
    print("epoch:{}".format(epoch))

    # shuffle training data
    perm = np.random.permutation(len(train_en_sents))
    train_en_sents_shuffled = train_en_sents[perm]
    train_cn_sents_shuffled = train_cn_sents[perm]
    train_cn_label_sents_shuffled = train_cn_label_sents[perm]
    # print(train_en_sents_shuffled.shape[0],train_en_sents_shuffled.shape[1])
    for iteration in range(train_en_sents_shuffled.shape[0] // batch_size):
        x_data = train_en_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
        sent = paddle.to_tensor(x_data)
        en_repr = encoder(sent)

        x_cn_data = train_cn_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
        x_cn_label_data = train_cn_label_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
 
        loss = paddle.zeros([1]) 
        for i in range( cn_length + 2):
            cn_word = paddle.to_tensor(x_cn_data[:,i:i+1])
            cn_word_label = paddle.to_tensor(x_cn_label_data[:,i])

            logits = decoder(cn_word, en_repr)
            step_loss = F.cross_entropy(logits, cn_word_label)
            loss += step_loss

        loss = loss / (cn_length + 2)
        if(iteration % 50 == 0):
            print("iter {}, loss:{}".format(iteration, loss.numpy()))

        loss.backward()
        opt.step()
        opt.clear_grad()

输出结果如下图3所示:

在这里插入图片描述


四、模型预测

encoder.eval()
decoder.eval()

num_of_exampels_to_evaluate = 10

indices = np.random.choice(len(train_en_sents),  num_of_exampels_to_evaluate, replace=False)
x_data = train_en_sents[indices]
sent = paddle.to_tensor(x_data)
en_repr = encoder(sent)

word = np.array(
    [[cn_vocab['<bos>']]] * num_of_exampels_to_evaluate
)
word = paddle.to_tensor(word)
 

decoded_sent = []
for i in range(cn_length + 2):
    logits  = decoder(word, en_repr)
    word = paddle.argmax(logits, axis=1)
    decoded_sent.append(word.numpy())
    word = paddle.unsqueeze(word, axis=-1)

results = np.stack(decoded_sent, axis=1)
for i in range(num_of_exampels_to_evaluate):
    print('---------------------')
    en_input = " ".join(datas[indices[i]][0])
    ground_truth_translate = "".join(datas[indices[i]][1])
    model_translate = ""
    for k in results[i]:
        w = list(cn_vocab)[k]
        if w != '<pad>' and w != '<eos>':
            model_translate += w
    print(en_input)
    print("true: {}".format(ground_truth_translate))
    print("pred: {}".format(model_translate))

输出结果如下图4所示:

在这里插入图片描述


总结

本系列文章内容为根据清华社出版的《机器学习实践》所作的相关笔记和感悟,其中代码均为基于百度飞桨开发,若有任何侵权和不妥之处,请私信于我,定积极配合处理,看到必回!!!

最后,引用本次活动的一句话,来作为文章的结语~( ̄▽ ̄~)~:

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。

ps:更多精彩内容还请进入本文专栏人工智能,进行查看,欢迎大家支持与指教啊~( ̄▽ ̄~)~

在这里插入图片描述

相关文章
|
11天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
45 9
|
7天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
3天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
|
3天前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们还将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。
|
3天前
|
机器学习/深度学习 数据采集 边缘计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习在图像识别领域的应用,并分析了当前面临的主要挑战。通过具体案例和数据分析,展示了深度学习技术如何推动图像识别的边界,同时指出了数据质量、模型泛化能力及计算资源等方面的限制因素。文章旨在为研究人员和从业者提供一个关于深度学习在图像识别中应用现状与未来发展方向的全面视角。
|
6天前
|
机器学习/深度学习 算法 大数据
深度学习在医疗影像诊断中的应用
本文探讨了深度学习技术在医疗影像诊断领域的应用,分析了其如何通过提高图像识别精度来辅助医生做出更准确的诊断。文章首先介绍了深度学习的基本概念和关键技术,随后详细阐述了这些技术在处理复杂医疗影像数据时的优势,并通过案例分析展示了深度学习在实际应用中取得的成果。此外,还讨论了当前面临的挑战以及未来的发展趋势。
|
9天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
9天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
6天前
|
机器学习/深度学习 人工智能 供应链
深度学习在图像识别中的应用及案例分析
【10月更文挑战第40天】本文将探讨深度学习在图像识别领域的应用,通过分析其基本原理、关键技术和实际应用案例,揭示深度学习如何革新了图像处理技术。文章不仅提供理论框架,还深入讨论了深度学习模型如卷积神经网络(CNN)的构建和训练过程,以及这些技术如何在自动驾驶汽车、医疗诊断等多个领域得到实际应用。通过具体案例,我们将看到深度学习如何使机器视觉更加精准和高效。

热门文章

最新文章

下一篇
无影云桌面