【笔记】最佳实践—如何优化数据导入导出

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 数据库实际应用场景中经常需要进行数据导入导出,本文将介绍如何使用数据导入导出工具。

测试环境

本文档的测试环境要求如下表:

环境 参数
PolarDB-X版本 polarx-kernel_5.4.11-16282307_xcluster-20210805
节点规格 16核64GB
节点个数 4个

测试用表如下:


CREATE TABLE `sbtest1` (
    `id` int(11) NOT NULL,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`),
    KEY `k_1` (`k`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8mb4 dbpartition by hash(`id`);

导入导出工具介绍

PolarDB-X常见的数据导出方法有:

  • mysql -e命令行导出数据
  • musqldump工具导出数据
  • select into outfile语句导出数据(默认关闭)
  • Batch Tool工具导出数据(PolarDB-X配套的导入导出工具)

PolarDB-X常见的数据导入方法有:

  • source语句导入数据
  • mysql命令导入数据
  • 程序导入数据
  • load data语句导入数据
  • Batch Tool工具导入数据(PolarDB-X配套的导入导出工具)

MySQL原生命令使用示例

mysql -e命令可以连接本地或远程服务器,通过执行sql语句,例如select方式获取数据,原始输出数据以制表符方式分隔,可通过字符串处理改成','分隔,以csv文件方式存储,方法示例:


mysql -h ip  -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM sbtest1;" >/home/data_1000w.txt

## 原始数据以制表符分隔,数据格式:188092293 27267211 59775766593-64673028018-...-09474402685 01705051424-...-54211554755
mysql -h ip -P port -u usr -pPassword db_name -N -e "SELECT id,k,c,pad FROM sbtest1;" | sed 's/\t/,/g' >/home/data_1000w.csv
## csv文件以逗号分隔,数据格式:188092293,27267211,59775766593-64673028018-...-09474402685,01705051424-...-54211554755

原始数据格式适合load data语句导入数据,使用方法可参考:LOAD DATA 语句,示例如下:


LOAD DATA LOCAL INFILE '/home/data_1000w.txt' INTO TABLE sbtest1;
## LOCAL代表从本地文件导入,local_infile参数必须开启

csv文件数据适合程序导入,具体方式可查看使用程序进行数据导入

mysqldump工具使用示例

mysqldump工具可以连接到本地或远程服务器,详细使用方法请参见使用mysqldump导入导出数据

  • 导出数据示例:
mysqldump -h ip  -P port -u usr -pPassword --default-character-set=utf8mb4 --net_buffer_length=10240 --no-tablespaces --no-create-db --no-create-info --skip-add-locks --skip-lock-tables --skip-tz-utc --set-charset  --hex-blob db_name [table_name] > /home/dump_1000w.sql
  • mysqldump导出数据可能会出现的问题及解决方法,这两个问题通常是mysql client和mysql server版本不一致导致的。
    1. 问题:mysqldump: Couldn't execute 'SHOW VARIABLES LIKE 'gtid\_mode''解决方法:添加“--set-gtid-purged=OFF”参数关闭gtid_mode。
    2. 问题:mysqldump: Couldn't execute 'SHOW VARIABLES LIKE 'ndbinfo\_version''解决方法:查看mysqldump --version和mysql版本是否一致,使用和mysql版本一致的mysql client。
  • 导出的数据格式是SQL语句方式,以Batch Insert语句为主体,包含多条SQL语句,INSERT INTO `sbtest1` VALUES (...),(...),“net_buffer_length”参数将影响batch size大小。
  • SQL语句格式合适的导入数据方式:
方法一:souce语句导入数据

source /home/dump_1000w.sql
方法二:mysql命令导入数据
mysql -h ip -P port -u usr -pPassword --default-character-set=utf8mb4 db_name < /home/dump_1000w.sql

Batch Tool工具使用示例

Batch Tool是阿里云内部开发的数据导入导出工具,支持多线程操作。

  • 导出数据:
## 导出“默认值=分片数”个文件
java -jar batch-tool.jar -h ip -P port -u usr -pPassword -D db_name -o export -t sbtest1 -s ,
## 导出整合成一个文件
java -jar batch-tool.jar -h ip -P port -u usr -pPassword -D db_name -o export -t sbtest1 -s , -F 1
  • 导入数据:
## 导入32个文件
java -jar batch-tool.jar -hpxc-spryb387va1ypn.polarx.singapore.rds.aliyuncs.com -P3306 -uroot -pPassw0rd -D sysbench_db -o import -t sbtest1 -s , -f "sbtest1_0;sbtest1_1;sbtest1_2;sbtest1_3;sbtest1_4;sbtest1_5;sbtest1_6;sbtest1_7;sbtest1_8;sbtest1_9;sbtest1_10;sbtest1_11;sbtest1_12;sbtest1_13;sbtest1_14;sbtest1_15;sbtest1_16;sbtest1_17;sbtest1_18;sbtest1_19;sbtest1_20;sbtest1_21;sbtest1_22;sbtest1_23;sbtest1_24;sbtest1_25;sbtest1_26;sbtest1_27;sbtest1_28;sbtest1_29;sbtest1_30;sbtest1_31" -np -pro 64 -con 32
## 导入1个文件
java -jar batch-tool.jar -h ip -P port -u usr -p password -D db_name -o import -t sbtest1 -s , -f "sbtest1_0" -np

导出方法对比

测试方法以PolarDB-X导出1000w行数据为例,数据量大概2GB左右。

方式 数据格式 文件大小 耗时 性能(行/每秒) 性能(MB/S)
mysql -e命令 导出原始数据 原始数据格式 1998MB 33.417s 299248 59.8
mysql -e命令导出csv格式 csv格式 1998MB 34.126s 293031 58.5
mysqldump工具(net-buffer-length=10KB) sql语句格式 2064MB 30.223s 330873 68.3
mysqldump工具(net-buffer-length=200KB) sql语句格式 2059MB 32.783s 305036 62.8
batch tool工具文件数=32(分片数) csv格式 1998MB 4.715s 2120890 423.7
batch tool工具文件数=1 csv格式 1998MB 5.568s 1795977 358.8

总结:

  1. mysql -e命令和mysqldump工具原理上主要是单线程操作,性能差别并不明显。
  2. Batch Tool工具采用多线程方式导出,并发度可设置,能够极大提高导出性能。

导入方法对比

测试方法以PolarDB-X导入1000w行数据为例,源数据是上一个测试中导出的数据,数据量大概2GB左右。

方式 数据格式 耗时 性能(行/每秒) 性能(MB/S)
source语句(net-buffer-length=10KB) sql语句格式 10m24s 16025 3.2
source语句(net-buffer-length=200KB) sql语句格式 5m37s 29673 5.9
mysql命令导入(net-buffer-length=10KB) sql语句格式 10m27s 15948 3.2
mysql命令导入(net-buffer-length=200KB) sql语句格式 5m38s 29585 5.9
load data语句导入 原始数据格式 4m0s 41666 8.3
程序导入batch-1000thread-1 csv格式 5m40s 29411 5.9
程序导入batch-1000thread-32 csv格式 19s 526315 105.3
batch tool工具文件数=32(分片数) csv格式 19.836s 504133 100.8
batch tool工具文件数=1 csv格式 10.806s 925411 185.1

总结:

  1. source语句和mysql命令导入方式,都是单线程执行SQL语句导入,实际是Batch Insert语句的运用,Batch size大小会影响导入性能。Batch size和mysqldump导出数据时的“net-buffer-length”参数有关。建议优化点如下:
    • 推荐将“net-buffer-length”参数设置大,不超过256K,以增大batch size大小,来提高插入性能。
    • 使用第三方工具,例如mysqldump,进行mydumper(备份)和myloader(导入)等,可多线程操作。
  1. load data语句是单线程操作,性能优于mysql命令和source语句。
  2. 程序导入灵活性较好,可自行设置合适的batch size和并发度,可以达到较好性能。推荐batch大小为1000,并发度为16~32。
  3. Batch Tool工具支持多线程导入,且贴合分布式多分片的操作方式,性能优异。

总结

  1. PolarDB-X兼容MySQL运维上常用的数据导入导出方法,但这些方法大多为MySQL单机模式设计,只支持单线程操作,性能上无法充分利用所有分布式资源。
  2. PolarDB-X提供Batch Tool工具,非常贴合分布式场景,在多线程操作下,能够达到极快的数据导入导出性能。
相关文章
|
存储 关系型数据库 MySQL
Docker(五)进阶:Docker卷(volumes)
数据卷:设计用来持久化数据的,它的生命周期独立于容器,不会因为容器被删除后自动删除,并且也不存在垃圾回收这样的机制来处理没有任何容器引用的 数据卷。
1578 0
Docker(五)进阶:Docker卷(volumes)
|
安全 网络协议
最新可靠好用的DNS服务器地址汇总
如果修改DNS服务器地址就可以访问google等服务,你还等什么?使用免费DNS解析服务除了去掉了运营商的各种广告,还有个最大的好处就是不会重定向或者过滤用户所访问的地址,这样就防止了很多网站被电信、网通劫持,有利于提供访问一些国外网站的成功率 如googlecode,网友应该养成不使用默认DNS的习惯,笔者汇总了常用可靠的DNS服务器地址。
15847 0
|
2月前
|
测试技术 持续交付 项目管理
软件外包靠谱吗?一位老客户的回归与行业的隐秘真相-优雅草卓伊凡
软件外包靠谱吗?一位老客户的回归与行业的隐秘真相-优雅草卓伊凡
87 12
软件外包靠谱吗?一位老客户的回归与行业的隐秘真相-优雅草卓伊凡
|
存储 SQL NoSQL
NoSQL数据库与传统关系型数据库的比较
【7月更文挑战第29天】NoSQL数据库与传统关系型数据库各有其独特的优势和适用场景。关系型数据库在复杂查询、事务处理和一致性方面表现出色,但在扩展性和处理大规模数据集时可能受到限制。而NoSQL数据库则以高扩展性、高性能和高可用性为目标,适用于处理大规模数据集和高并发读写场景。在选择数据库时,开发者应根据具体的应用场景和需求进行权衡和选择。
|
存储 人工智能 安全
CPFS深度解析:并行文件存储加速AI创新
在生成式AI的大潮中,并行文件系统作为高性能数据底座,为AI算力提供高吞吐、低延迟的数据存储服务。在本话题中,我们将介绍阿里云并行文件存储CPFS针对AI智算场景而提供的产品能力演进与更新,深入讲解在性能、成本、稳定、安全等方面的技术创新。
1010 0
|
SQL 缓存 关系型数据库
(十二)MySQL之内存篇:深入探寻数据库内存与Buffer Pool的奥妙!
MySQL是基于磁盘工作的,这句几乎刻在了每个后端程序员DNA里,但它真的对吗?其实答案并不能盖棺定论,你可以说MySQL是基于磁盘实现的,这点我十分认同,但要说MySQL是基于磁盘工作,这点我则抱否定的态度,至于为什么呢?这跟咱们本章的主角:Buffer Pool有关,Buffer Pool是什么?还记得咱们在《MySQL架构篇》中聊到的缓存和缓冲区么,其中所提到的写入缓冲区就位于Buffer Pool中。
1251 1
|
算法 搜索推荐 安全
C# | 上位机开发新手指南(八)加密算法——AES
AES——这是在加密算法中相当重要的一种加密方式! 虽然这个世界上已经存在了非对称加密算法(比如RSA、ECC等),但是在对称加密算法中,AES的地位依然相当重要。与非对称加密算法不同,对称加密算法使用的是相同的密钥对数据进行加密和解密,因此其加密和解密速度更快,而且更加高效。而在对称加密算法中,AES是目前最安全、最可靠的加密算法之一,其加密强度和运行效率都非常高。因此,无论是在个人计算机、移动设备,还是在服务器和云计算等领域,AES都被广泛应用于数据的加密和解密过程中。
706 0
C# | 上位机开发新手指南(八)加密算法——AES
|
机器学习/深度学习 运维 算法
从K-means到高斯混合模型:常用聚类算法的优缺点和使用范围?
从K-means到高斯混合模型:常用聚类算法的优缺点和使用范围?
2133 0
|
Oracle 关系型数据库
关于ORACLE IMPDP 报错ORA-29913 ORA-31693 ORA-01861的原因
导入语句如下: impdp system/'Nnrjt$739rt'  job_name=sec_dmp tables=seccore.syn_event remap_schema=seccore:sechis dumpfile=BAK:expdp_20160523.
2044 0