浅析InnoDB索引结构(1)

简介: 浅析InnoDB索引结构

0、导读

InnoDB表的索引有哪些特性,以及索引组织结构是怎样的

1、InnoDB聚集索引特点

我们知道,InnoDB引擎的聚集索引组织表,必然会有一个聚集索引。

行数据(row data)存储在聚集索引的叶子节点(除了发生overflow的列,参见 浅析InnoDB Record Header及page overflow,后面简称 “前置文”),并且其存储的相对顺序取决于聚集索引的顺序。这里说相对顺序而不是物理顺序,是因为叶子节点数据页中,行数据的物理顺序和相对顺序可能并不是一致的,放在后面会讲。

InnoDB聚集索引的选择先后顺序是这样的:

  1. 如果有显式定义的主键(PRIMARY KEY),则会选择该主键作为聚集索引
  2. 否则,选择第一个所有列都不允许为NULL的唯一索引
  3. 若前两者都没有,则InnoDB会选择内置的DB_ROW_ID作为聚集索引,命名为GEN_CLUST_INDEX

特别提醒: DB_ROW_ID占用6个字节,每次自增,且是整个实例内全局分配。也就是说,当前实例如果有多个表都采用了内置的DB_ROW_ID作为聚集索引,则在这些表插入新数据时,他们的内置DB_ROW_ID值并不是连续的,而是跳跃的。像下面这样:

t1表的ROW_ID:1、3、7、10
t2表的ROW_ID:2、4、5、6、8、9

2、InnoDB索引结构

InnoDB默认的索引数据结构采用B+树(空间索引采用R树),索引数据存储在叶子节点。

InnoDB的基本I/O存储单位是数据页(page),一个page默认是16KB。我们在 前置文 说过,每个page默认会预留1/16空闲空间用于后续数据“变长”更新所需,因此在最理想的顺序插入状态下,其产生的碎片也最少,这时候差不多能填满15/16的page空间。如果是随机写入的话,则page空间利用率大概是1/2 ~ 15/16。

当 row_format = DYNAMIC|COMPRESSED 时,索引最多长度为 3072字节,当 row_format = REDUNDANT|COMPACT 时,索引最大长度为 767字节。当page size不是默认的16KB时,最大索引长度限制也会跟着发生变化。

我们接下来分别验证关于InnoDB索引的基本结构特点。

首先创建如下测试表:

[root@yejr.me] [innodb]> CREATE TABLE `t1` (

`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`c1` int(10) unsigned NOT NULL DEFAULT '0',
`c2` varchar(100) NOT NULL,
`c3` varchar(100) NOT NULL,
PRIMARY KEY (`id`),
KEY `c1` (`c1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

用下面的方法写入10条测试数据:

set @uuid1=uuid(); set @uuid2=uuid();
insert into t1 select 0, round(rand()*1024),
@uuid1, concat(@uuid1, @uuid2);

看下 t1 表的整体结构:

# 用innodb_ruby工具查看
[root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 space-indexes
id name root fseg fseg_id used allocated fill_factor
238 PRIMARY 3 internal 1 1 1 100.00%
238 PRIMARY 3 leaf 2 0 0 0.00%
239 c1 4 internal 3 1 1 100.00%
239 c1 4 leaf 4 0 0 0.0

# 用innblock工具查看
[root@yejr.me]# innblock innodb/t1.ibd scan 16
...
===INDEX_ID:238
level0 total block is (1)
block_no: 3,level: 0|*|
===INDEX_ID:239
level0 total block is (1)
block_no: 4,level: 0|*|

可以看到

索引ID 索引类型 根节点page no 索引层高
238 主键索引(聚集索引) 3 1
239 辅助索引 4 1

3、InnoDB索引特点验证

3.1 特点1:聚集索引叶子节点存储整行数据

先扫描第3个page,截取其中第一条物理记录的内容:

[root@yejr.me]# innodb_space -s ibdata1 -T innodb/t1 -p 3 page-dump
...
records:
{:format=>:compact,
:offset=>127,
:header=>
{:next=>263,
:type=>:conventional,
:heap_number=>2,
:n_owned=>0,
:min_rec=>false,
:deleted=>false,
:nulls=>[],
:lengths=>{"c2"=>36, "c3"=>72},
:externs=>[],
:length=>7},
:next=>263,
:type=>:clustered,
#第一条物理记录,id=1
:key=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>1}],
:row=>
[{:name=>"c1", :type=>"INT UNSIGNED", :value=>777},
{:name=>"c2",
:type=>"VARCHAR(400)",
:value=>"a1c1a7c7-bda5-11e9-8476-0050568bba82"},
{:name=>"c3",
:type=>"VARCHAR(400)",
:value=>
"a1c1a7c7-bda5-11e9-8476-0050568bba82a1c1aec5-bda5-11e9-8476-0050568bba82"}],
:sys=>
[{:name=>"DB_TRX_ID", :type=>"TRX_ID", :value=>10950},
{:name=>"DB_ROLL_PTR",
:type=>"ROLL_PTR",
:value=>
{:is_insert=>true,
:rseg_id=>119,
:undo_log=>{:page=>469, :offset=>272}}}],
:length=>129,
:transaction_id=>10950,
:roll_pointer=>
{:is_insert=>true, :rseg_id=>119, :undo_log=>{:page=>469, :offset=>272}}}

很明显,的确是存储了整条数据的内容。

聚集索引树的键值(key)是主键索引值(i=10),聚集索引节点值(value)是其他非聚集索引列(c1,c2,c3)以及隐含列(DB_TRX_ID、DB_ROLL_PTR)。

优化建议1:尽量不要存储大对象数据,使得每个叶子节点都能存储更多数据,降低碎片率,提高buffer pool利用率。此外也能尽量避免发生overflow

            </div>
相关文章
|
机器学习/深度学习 算法 对象存储
【玩转数据系列十】利用阿里云机器学习在深度学习框架下实现智能图片分类
伴随着今日阿里云机器学习PAI在云栖大会的重磅发布,快来感受下人工智能的魅力。 一、背景 随着互联网的发展,产生了大量的图片以及语音数据,如何对这部分非结构化数据行之有效的利用起来,一直是困扰数据挖掘工程师的一到难题。
50059 63
|
缓存 边缘计算 前端开发
秒懂边缘云 | CDN基础入门:CDN缓存配置及优化
介绍如何通过合理配置CDN缓存功能来提升业务缓存的利用率,实现终端用户访问体验的提升
5378 1
秒懂边缘云 | CDN基础入门:CDN缓存配置及优化
|
存储 编解码 生物认证
华为Mate 10和Mate 10 Pro终极对比,结果很尴尬?
去年12月,作为华为的两大高端型号之一,Mate 9系列同时推出了普通版、pro版和保时捷版,后两者作为向高端市场的进一步上探并收到了不错的市场反响后。今年华为再接再厉,继续推出了Mate 10系列的普通版、pro版和保时捷版。
959 0
华为Mate 10和Mate 10 Pro终极对比,结果很尴尬?
|
分布式计算 运维 DataWorks
阿里云Dataworks数据集成工具实现:OTS -> Maxcompute数据同步
数据集成主要用于离线(批量)数据同步。离线(批量)的数据通道通过定义数据来源和去向的数据源和数据集,提供一套抽象化的数据抽取插件(Reader)、数据写入插件(Writer),并基于此框架设计一套简化版的中间数据传输格式,从而实现任意结构化、半结构化数据源之间数据传输。结合用户在使用OTS数据源同步的时候容易出现问题,这里演示:OTS数据源同步数据到Maxcompute的具体实现步骤。
1763 0
阿里云Dataworks数据集成工具实现:OTS -> Maxcompute数据同步
|
存储 分布式计算 监控
【大数据干货】轻松处理每天2TB的日志数据,支撑运营团队进行大数据分析挖掘,随时洞察用户个性化需求。
“用户每天产生的日志量大约在2TB。我们需要将这些海量的数据导入云端,然后分天、分小时的展开数据分析作业,分析结果再导入数据库和报表系统,最终展示在运营人员面前。”墨迹天气运维部经理章汉龙介绍,整个过程中数据量庞大,且计算复杂,这对云平台的大数据能力、生态完整性和开放性提
17061 4
|
开发工具 git
gitHub于2008年4月10日正式上线
gitHub是一个面向开源及私有软件项目的托管平台,
1045 0
|
视频直播
手机视频直播系统全面升级,直播软件源码全新功能体验
针对于不同细分领域直播软件的功能也越来越多样化,直播软件发展至今,有哪些功能是令人难以抗拒的呢?
|
固态存储 Oracle 关系型数据库
Dell PowerEdge R740xd解析:服务器只看参数那就错了
- 支持3/6块共900W GPU:PCIe散热设计非易事; - NVDIMM:电池保护、Oracle数据库和SDS应用; - 机箱内部驱动器托架、PERC、NDC等
5623 0