超长序列,超快预测!深势科技联手阿里云,AI 蛋白质预测再下一城

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 强强联合,突破 AI 蛋白质预测模型推理性能瓶颈,支持最高 6.6k 长氨基酸序列蛋白质的预测计算,达到目前已知最优推理效果。

1.png


近日,深势科技与阿里云机器学习 PAI 团队联手,通过全新的蛋白质结构预测推理加速方案 FoldAcc,结合深势 Uni-Fold 最新模型代码和参数,将单次预测能支持的最大氨基酸序列长度提升至 6.6k,覆盖 99.992% 已知的蛋白序列,同时推理速度显著提升,达到目前已知的最佳推理优化效果,将为 AI 预测蛋白质结构落地应用提供重要助力。

以新冠病毒研究重点之一 —— 具有三聚体结构的刺突蛋白为例,其氨基酸序列典型总长度接近 4k,原版 AlphaFold 会因为超出显存限制(OOM)而无法进行预测计算,使用 Uni-Fold + FoldAcc 则能在 10 分钟左右完成 AI 推理计算。

自 2020 年 DeepMind 推出基于深度学习模型的 AlphaFold2 以来,AI 技术辅助蛋白质结构精确预测的相关研究备受关注,产学研界不断涌现创新成果。然而,在推动 AI 蛋白质结构预测规模化、产业化落地进程中,基础设施及工具完善性、AI 模型开发与部署效率等问题,仍然是横亘在研究者面前的难题。

2022 年 8 月,深势科技升级并开源 Uni-Fold 项目,成功复现了 AlphaFold2、AlphaFold-Multimer 模型的全尺寸从头训练,并通过多项效率优化,并将 AlphaFold 训练速度提升 220%,超越 OpenFold、FastFold 等方案,惠及更多研究者。

其中,针对困扰业界已久的 Evoformer 神经网络结构推理性能瓶颈问题,深势科技与阿里云 PAI 团队,基于在 AI 模型系统优化领域的长期积累,融合多卡并行、混合精度、编译优化等多项推理优化技术,使 Uni-Fold 训练的模型能进行多卡推理加速,并支持计算更长的氨基酸序列。

典型加速效果的测试结果如下(基于 A100-80G GPU,并启用 bf16)

1.png

Uni-Fold 升级开源,支持复合物训练

作为生命科学领域重要的基础问题,蛋白质结构研究关系到癌症预警、靶向药物研究、衰老等临床医学和生命科学课题。传统的蛋白质结构研究手段,如:X 射线晶体学、冷冻电镜等,需要消耗大量时间和资源。如何快速高效并且能够规模化地预测蛋白质结构,一直是研究者们探寻求解的重要问题。

2021 年 12 月,深势科技推出 Uni-Fold v1.0.0,国际首次复现了 AlphaFold2 官方代码的全尺寸从头训练,并开源了训练与推理代码;2022 年 8 月,Uni-Fold 升级并开源了最新代码与模型参数,完整支持蛋白质单体、复合物结构预测模型的推理与训练。

此次开源的 Uni-Fold 基于 PyTorch 复现并改进的 AlphaFold (-Multimer) 模型,支持从头训练和推理部署,并且在 Protein Data Bank(PDB)最新公布的、模板相似度小于 40% 的单体与复合物测试集上,都取得了与同类开源项目一致或更优的准确率。

1.png

此外 Uni-Fold 也进行了多项效率优化,将训练时间由 11 天缩短至约 4 天,显著优于其他同类开源项目。

1.png

机器学习平台 PAI 提供全链路 AI 工程支撑

阿里云机器学习平台 PAI 为 Uni-Fold 项目提供了完善的 AI 工程能力。PAI 是国内唯一连续入选 Gartner 数据科学与机器学习平台报告的机器学习 / 深度学习平台,面向 AI 开发及应用全链路提供全面的工程化服务,并具备丰富的场景化落地实践。

针对模型推理优化场景,PAI 自研的通用推理加速器 PAI-Blade 能在不同业务场景下,通过模型系统联合优化,使模型达到最优推理性能,兼容主流机器学习框架,适配 GPU、CPU、端侧设备等多类型加速设备。

其中,PAI-Blade 核心组件 BladeDISC 具备业界领先的动态尺寸模型优化、大颗粒度算子融合等编译优化技术,在阿里巴巴集团内外客户的实际生产场景广泛应用,助力实现高性价比的 AI 应用部署。2022 年 2 月,BladeDISC 项目正式开源。

未来,为前沿科研提供更好用的 AI 基础设施

以 AI 蛋白质结构预测为典型代表,AI for Science 的科学研究新范式正取得越来越多突破,人工智能与生命科学、物理、化学等领域的技术交织,将为科学研究和产业进步带来极大推动,也对 AI 基础技术与平台应用提出了新挑战。

深势科技是 AI for Science 科学研究范式的先行者,阿里云机器学习平台 PAI 是国内应用最广泛的机器学习平台之一,我们将持续为生物医药、能源、材料等领域的研究与产业应用提供更好用的 AI 基础设施,共同推动 AI for Science 领域的技术生态建设。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
7天前
|
人工智能 vr&ar UED
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
|
5天前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
|
7天前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI 上下文工程是管理大模型输入信息的系统化框架,解决提示工程中的幻觉、上下文溢出与信息冲突等问题。通过上下文的采集、存储、加工与调度,提升AI推理准确性与交互体验。AnalyticDB PostgreSQL 版提供增强 RAG、长记忆、Supabase 等能力,助力企业构建高效、稳定的 AI 应用。
|
4天前
|
机器学习/深度学习 人工智能 Serverless
吉利汽车携手阿里云函数计算,打造新一代 AI 座舱推理引擎
当前吉利汽车研究院人工智能团队承担了吉利汽车座舱 AI 智能化的方案建设,在和阿里云的合作中,基于星睿智算中心 2.0 的 23.5EFLOPS 强大算力,构建 AI 混合云架构,面向百万级用户的实时推理计算引入阿里云函数计算的 Serverless GPU 算力集群,共同为智能座舱的交互和娱乐功能提供大模型推理业务服务,涵盖的场景如针对模糊指令的复杂意图解析、文生图、情感 TTS 等。
|
5天前
|
机器学习/深度学习 人工智能 算法
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
NBA中国与阿里云达成合作,首发360°实时回放技术,融合AI视觉引擎,实现多视角、低延时、沉浸式观赛新体验,重新定义体育赛事观看方式。
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
|
5天前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
5天前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
|
19天前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
220 19
|
7天前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
62 1

热门文章

最新文章