Python编程:aiohttp和requests网络io性能比较

简介: Python编程:aiohttp和requests网络io性能比较

使用4 种方式 对网络发起10次请求,进行10次耗时测试

以下代码在 Python3.6.5 下测试

测试代码

# -*- coding: utf-8 -*-
import asyncio
import time
import aiohttp
import requests
urls = ["https://www.baidu.com/"] * 10
# 1、直接使用 requests
def requests_main():
    for url in urls:
        response = requests.get(url)
        html = response.text
# 2、使用 requests.session
def requests_session():
    with requests.session() as session:
        for url in urls:
            response = session.get(url)
            html = response.text
# 3、使用 aiohttp
async def aiohttp_main():
    for url in urls:
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as response:
                html = await response.text()
# 4、 使用 aiohttp.session
async def aiohttp_session():
    async with aiohttp.ClientSession() as session:
        for url in urls:
            async with session.get(url) as response:
                html = await response.text()
if __name__ == '__main__':
    for i in range(10):
        start_time = time.time()
        # requests_main()
        # requests_session()
        # asyncio.get_event_loop().run_until_complete(aiohttp_main())
        asyncio.get_event_loop().run_until_complete(aiohttp_session())
        end_time = time.time()
        print("{:.3}".format(end_time - start_time))
    """
    输出结果:
    requests_main
    2.2, 3.69, 2.28, 2.14, 3.37, 2.25, 3.95, 2.97, 2.24, 3.61
    requests_session
    0.917, 0.719, 0.682, 0.814, 0.874, 1.66, 0.676, 0.672, 0.66, 0.824
    aiohttp_main
    3.1, 2.05, 2.12, 3.12, 1.97, 2.19, 3.38, 2.17, 2.44, 3.2 
    aiohttp_session
    1.63, 0.599, 0.656, 0.586, 0.603, 0.607, 0.948, 0.6, 1.54, 1.42 
    """

对输出的结果进行平均值计算

requests_main_list = [2.2, 3.69, 2.28, 2.14, 3.37, 2.25, 3.95, 2.97, 2.24, 3.61]
requests_session_list = [0.917, 0.719, 0.682, 0.814, 0.874, 1.66, 0.676, 0.672, 0.66, 0.824]
aiohttp_main_list = [3.1, 2.05, 2.12, 3.12, 1.97, 2.19, 3.38, 2.17, 2.44, 3.2]
aiohttp_session_list = [1.63, 0.599, 0.656, 0.586, 0.603, 0.607, 0.948, 0.6, 1.54, 1.42]
requests_main_avg = sum(requests_main_list) / len(requests_main_list)
requests_session_avg = sum(requests_session_list) / len(requests_session_list)
aiohttp_main_avg = sum(aiohttp_main_list) / len(aiohttp_main_list)
aiohttp_session_avg = sum(aiohttp_session_list) / len(aiohttp_session_list)
print(requests_main_avg)
print(requests_session_avg)
print(aiohttp_main_avg)
print(aiohttp_session_avg)

image.png

相关文章
|
2月前
|
数据采集 存储 C++
Python异步爬虫(aiohttp)加速微信公众号图片下载
Python异步爬虫(aiohttp)加速微信公众号图片下载
|
2月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
270 51
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
67 4
|
4月前
|
监控 应用服务中间件 Linux
掌握并发模型:深度揭露网络IO复用并发模型的原理。
总结,网络 I/O 复用并发模型通过实现非阻塞 I/O、引入 I/O 复用技术如 select、poll 和 epoll,以及采用 Reactor 模式等技巧,为多任务并发提供了有效的解决方案。这样的模型有效提高了系统资源利用率,以及保证了并发任务的高效执行。在现实中,这种模型在许多网络应用程序和分布式系统中都取得了很好的应用成果。
123 35
|
4月前
|
调度 Python
探索Python高级并发与网络编程技术。
可以看出,Python的高级并发和网络编程极具挑战,却也饱含乐趣。探索这些技术,你将会发现:它们好比是Python世界的海洋,有穿越风暴的波涛,也有寂静深海的奇妙。开始旅途,探索无尽可能吧!
105 15
|
Ubuntu 网络协议 Unix
02理解网络IO:实现服务与客户端通信
网络IO指客户端与服务端通过网络进行数据收发的过程,常见于微信、QQ等应用。本文详解如何用C语言实现一个支持多客户端连接的TCP服务端,涉及socket编程、线程处理及通信流程,并分析“一消息一线程”模式的优缺点。
164 0
|
5月前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
715 31
|
5月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
142 7
|
5月前
|
存储 数据库 Python
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
118 14
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
360 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

推荐镜像

更多