【预测模型】基于BP神经网络、LSTM、GRNN实现风电功率预测附matlab代码

简介: 【预测模型】基于BP神经网络、LSTM、GRNN实现风电功率预测附matlab代码

 1 简介

风电功率预测结果的准确性,不仅关系到风力发电厂的综合运行效率,也与区域运行成本具备直接联系,基于BP神经网络、LSTM、GRNN实现风电功率预测。经过实例分析,证明设计的方法对风电功率的预测结果误差均在最优误差范围内,预测的数值具有更高的价值。

2 部分代码

%% ARMA 预测

clc,clear,close all

load data%导入数据

T=30;

buchang=size(unnamed,1)-T;%预测步长

y = unnamed(1:T);

[m,n]=size(y);

%% %% 3.确定ARMA模型阶数

% ACF和PACF法,确定阶数

figure

subplot(211),autocorr( y );

subplot(212),parcorr( y );

figure

dy = diff( y );

subplot(211),autocorr( dy );

subplot(212),parcorr( dy );

%% ARIMA 模型

Mdl = arima(5,1,0);

EstMdl = estimate(Mdl,y);

res = infer(EstMdl,y); %res即残差

% 模型验证

figure

subplot(2,2,1)

plot(res./sqrt(EstMdl.Variance))

title('Standardized Residuals')

subplot(2,2,2),qqplot(res)

subplot(2,2,3),autocorr(res)

subplot(2,2,4),parcorr(res)

% 预测

[yF,yMSE] = forecast(EstMdl,buchang,'Y0',y);

UB = yF + 1.96*sqrt(yMSE); %95置信区间下限

LB = yF - 1.96*sqrt(yMSE); %95置信区间下限

yF=[unnamed(1:T);yF];

figure(4)

h4 = plot(unnamed,'b');

hold on

h5 = plot(yF,'r','LineWidth',2);

h6 = plot(m+1:m+buchang,UB,'k--','LineWidth',1.5);

plot(m+1:m+buchang,LB,'k--','LineWidth',1.5);

legend('实际幅值','预测幅值');

xlabel('时间序列')

ylabel('幅值')

title('arma预测图')

bp_mse = mean((yF-unnamed).^2);%mse

disp(['ARMA预测的mse=',num2str(bp_mse)])

bp_mae = mean(abs(yF-unnamed));%mae

disp(['ARMA预测的mae=',num2str(bp_mae)])

bp_rmse = sqrt(mean((yF-unnamed).^2));%均方差

disp(['ARMA预测的rmse=',num2str(bp_rmse)])

3 仿真结果

image.gif编辑

image.gif编辑

4 参考文献

[1]丁宇宇, 陈颖, 周海. 基于MATLAB语言的BP神经网络风电功率超短期预测模型[C]// 中国电机工程学会电力系统自动化专业委员会三届一次会议暨2011年学术交流会. 中国电机工程学会, 2011.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

目录
打赏
0
0
0
0
875
分享
相关文章
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
102 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
68 1
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等