【笔记】开发指南—DQL语句—Grouping Sets、Rollup和Cube扩展

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 在关系型数据库中,通常需要使用多个SELECT + UNION语句来实现按照多组维度的结果分组,PolarDB-X新增支持通过Grouping Sets、Rollup和Cube扩展来实现这一目的。此外,PolarDB-X还支持在SELECT命令或HAVING子句中使用GROUPING函数和GROUPING_ID函数,来帮助解释使用上述扩展时的结果。本文将介绍相关语法和示例。

注意事项

  • 本文介绍的所有GROUP BY相关的扩展语法,均不支持查询下推至LogicalView算子中执行。关于查询下推,请参见查询改写与下推
  • 本文示例中所用测试数据信息如下:使用如下语句创建一张requests表:
CREATE TABLE requests (

`id` int(10) UNSIGNED NOT NULL,
`os` varchar(20) DEFAULT NULL,
`device` varchar(20) DEFAULT NULL,
`city` varchar(20) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE = InnoDB DEFAULT CHARSET = utf8 dbpartition BY hash(`id`) tbpartition BY hash(`id`);
  • requests表中使用如下语句插入测试所需的数据:
INSERT INTO requests (id, os, device, city) VALUES
(1, 'windows', 'PC', 'Beijing'),
(2, 'windows', 'PC', 'Shijiazhuang'),
(3, 'linux', 'Phone', 'Beijing'),
(4, 'windows', 'PC', 'Beijing'),
(5, 'ios', 'Phone', 'Shijiazhuang'),
(6, 'linux', 'PC', 'Beijing'),
(7, 'windows', 'Phone', 'Shijiazhuang');

GROUPING SETS扩展

  • 功能介绍GROUPING SETS是GROUP BY子句的扩展,可以生成一个结果集,该结果集实际上是基于不同分组的多个结果集的串联(与UNION ALL运算结果类似),但UNION ALL运算和GROUPING SETS扩展并不会消除合并结果集中的重复行。
  • 语法
GROUPING SETS (
{ expr_1 | ( expr_1a [, expr_1b ] ...) |
ROLLUP ( expr_list ) | CUBE ( expr_list )
} [, ...] )
  • 说明GROUPING SETS扩展可包含一个或多个由半角逗号(,)分隔表达式(如expr_1(expr_1a [, expr_1b ] ...))的任意组合,以及带半角圆括号(())的表达式列表(如( expr_list )),其中:
    • 每个表达式都可用于确定结果集的分组方式。
    • GROUPING SETS内也支持嵌套使用ROLLUP或者CUBE。
  • 示例
    • 通过GROUPING SETS扩展对数据进行分组查询,语法如下:
select os,device, city ,count(*)
from requests
group by grouping sets((os, device), (city), ());
上述语句等效于如下语句:
select os, device, NULL, count(*)
from requests group by os, device
union all
select NULL, NULL, NULL, count(*)
from requests
union all
select null, null, city, count(*)
from requests group by city;
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| windows | PC | NULL | 3 |
| linux | PC | NULL | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| ios | Phone | NULL | 1 |
| NULL | NULL | Shijiazhuang | 3 |
| NULL | NULL | Beijing | 4 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+

    • 说明 未在分组集中使用的表达式,会用NULL充当占位符,便于对这些未在分组集使用的结果集进行操作,例如结果city列中显示为NULL的行。
    • 通过在GROUPING SETS中嵌套ROLLUP来对数据进行分组,语法如下:
select os,device, city ,count(*) from requests 
group by grouping sets((city), ROLLUP(os, device));
上述语句等效于如下语句:
select os,device, city ,count(*) from requests
group by grouping sets((city), (os), (os, device), ());
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| NULL | NULL | Shijiazhuang | 3 |
| NULL | NULL | Beijing | 4 |
| windows | PC | NULL | 3 |
| linux | PC | NULL | 1 |
| ios | Phone | NULL | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| windows | NULL | NULL | 4 |
| linux | NULL | NULL | 2 |
| ios | NULL | NULL | 1 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+
    • 通过在GROUPING SETS中嵌套CUBE扩展来对数据进行分组,语法如下:
select os,device, city ,count(*) from requests 
group by grouping sets((city), CUBE(os, device));
上述语句等效于如下语句:
select os,device, city ,count(*) from requests
group by grouping sets((city), (os), (os, device), (), (device));
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| NULL | NULL | Beijing | 4 |
| NULL | NULL | Shijiazhuang | 3 |
| windows | PC | NULL | 3 |
| ios | Phone | NULL | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| linux | PC | NULL | 1 |
| windows | NULL | NULL | 4 |
| ios | NULL | NULL | 1 |
| linux | NULL | NULL | 2 |
| NULL | PC | NULL | 4 |
| NULL | Phone | NULL | 3 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+
    • 通过GROUP BY、CUBE和GROUPING SETS组合产生GROUPING SETS,示例如下:
select os,device, city, count(*)
from requests
group by os, cube(os,device), grouping sets(city);
上述语句等效于如下语句:
select os,device, city, count(*)
from requests
group by grouping sets((os,device,city),(os,city),(os,device,city));
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| linux | Phone | Beijing | 1 |
| windows | Phone | Shijiazhuang | 1 |
| windows | PC | Shijiazhuang | 1 |
| linux | PC | Beijing | 1 |
| windows | PC | Beijing | 2 |
| ios | Phone | Shijiazhuang | 1 |
| linux | NULL | Beijing | 2 |
| windows | NULL | Shijiazhuang | 2 |
| windows | NULL | Beijing | 2 |
| ios | NULL | Shijiazhuang | 1 |
+---------+--------+--------------+----------+

ROLLUP扩展

  • 功能介绍ROLLUP扩展生成一系列有总计的分层组,每个分层组都有小计。该层次结构的顺序由ROLLUP表达式列表中给定的表达式的顺序确定。该层次结构的顶部是列表中最左侧的项。每个连续项都会沿右侧在该层次结构中向下移动,最右侧的项是最低级别。
  • 语法
ROLLUP ( { expr_1 | ( expr_1a [, expr_1b ] ...) }
[, expr_2 | ( expr_2a [, expr_2b ] ...) ] ...)
  • 说明
    • 每个表达式都会用于确定结果集的分组方式。如果采用带圆括号形式的表达式,例如( expr_1a, expr_1b, ...),则 expr_1aexpr_1b返回的值组合定义层次结构的单个分组级别。
    • 对于列表中的第一项,例如expr_1( expr_1a, expr_1b, ...)的组合,PolarDB-X将为每个唯一值返回一个小计。对于列表中的第二项,例如expr_2( expr_2a, expr_2b, ...)的组合,PolarDB-X将为第二项的每个分组中的每个唯一值返回一个小计,依此类推。最后,PolarDB-X将为整个结果集返回一个总计。
    • 对于小计行,将为小计包含的各项返回NULL。
  • 示例
    • 通过ROLLUP对(os, device, city)按层级聚合的方式产生GROUPING SETS,语法如下:
select os,device, city, count(*)
from requests
group by rollup (os, device, city);
上述语句等效于如下语句:
select os,device, city, count(*)
from requests
group by os, device, city with rollup;
也等效于如下语句:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(os),());
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| windows | PC | Beijing | 2 |
| ios | Phone | Shijiazhuang | 1 |
| windows | PC | Shijiazhuang | 1 |
| linux | PC | Beijing | 1 |
| linux | Phone | Beijing | 1 |
| windows | Phone | Shijiazhuang | 1 |
| windows | PC | NULL | 3 |
| ios | Phone | NULL | 1 |
| linux | PC | NULL | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| windows | NULL | NULL | 4 |
| ios | NULL | NULL | 1 |
| linux | NULL | NULL | 2 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+
    • 通过ROLLUP对os, (os,device), city按层级聚合的方式产生GROUPING SETS,语法如下:
select os,device, city, count(*)
from requests
group by rollup (os, (os,device), city);
上述语句等效于如下语句:
select os,device, city, count(*)
from requests
group by os, (os,device), city with rollup;
也等效于如下语句:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(os),());
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| windows | PC | Beijing | 2 |
| windows | PC | Shijiazhuang | 1 |
| linux | PC | Beijing | 1 |
| linux | Phone | Beijing | 1 |
| windows | Phone | Shijiazhuang | 1 |
| ios | Phone | Shijiazhuang | 1 |
| windows | PC | NULL | 3 |
| linux | PC | NULL | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| ios | Phone | NULL | 1 |
| windows | NULL | NULL | 4 |
| linux | NULL | NULL | 2 |
| ios | NULL | NULL | 1 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+

CUBE扩展

  • 功能介绍CUBE扩展与ROLLUP扩展类似,但与生成分组并基于ROLLUP表达式列表中从左到右的项列表生成层次结构的ROLLUP扩展不同,CUBE是基于CUBE表达式列表中所有项的每个排列生成分组和小计。因此,与对同一表达式列表执行的ROLLUP相比,CUBE结果集会包含更多的行。
  • 语法
CUBE ( { expr_1 | ( expr_1a [, expr_1b ] ...) }
[, expr_2 | ( expr_2a [, expr_2b ] ...) ] ...)
  • 说明
    • 每个表达式都会用于确定结果集的分组方式。如果采用带半角圆括号的形式,例如( expr_1a, expr_1b, ...),则 expr_1aexpr_1b返回的值组合定义单个组。
    • 对于列表中的第一项,例如expr_1( expr_1a, expr_1b, ...)的组合,PolarDB-X将为每个唯一值返回一个小计。对于列表中的第二项,例如expr_2( expr_2a, expr_2b, ...)的组合,PolarDB-X在为每个唯一值返回一个小计的同时,还将为第一项和第二项的每个唯一组合返回一个小计。如果存在第三项,PolarDB-X则会为第三项的每个唯一值、第三项和第一项组合的每个唯一值、第三项和第二项组合的每个唯一值以及第三项、第二项和第一项组合的每个唯一值返回一个小计。最后,再将为整个结果集返回一个总计。
    • 对于小计行,将为小计包含的各项返回NULL。
  • 示例
    • 通过CUBE枚举(os, device, city)的所有可能列为GROUPING SETS,语法如下:
select os,device, city, count(*)
from requests
group by cube (os, device, city);
上述语句等效于如下语句:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(os, city),(device,city),(os),(device),(city),());
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| linux | Phone | Beijing | 1 |
| windows | Phone | Shijiazhuang | 1 |
| windows | PC | Beijing | 2 |
| ios | Phone | Shijiazhuang | 1 |
| windows | PC | Shijiazhuang | 1 |
| linux | PC | Beijing | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| windows | PC | NULL | 3 |
| ios | Phone | NULL | 1 |
| linux | PC | NULL | 1 |
| linux | NULL | Beijing | 2 |
| windows | NULL | Shijiazhuang | 2 |
| windows | NULL | Beijing | 2 |
| ios | NULL | Shijiazhuang | 1 |
| linux | NULL | NULL | 2 |
| windows | NULL | NULL | 4 |
| ios | NULL | NULL | 1 |
| NULL | Phone | Beijing | 1 |
| NULL | Phone | Shijiazhuang | 2 |
| NULL | PC | Beijing | 3 |
| NULL | PC | Shijiazhuang | 1 |
| NULL | Phone | NULL | 3 |
| NULL | PC | NULL | 4 |
| NULL | NULL | Beijing | 4 |
| NULL | NULL | Shijiazhuang | 3 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+
    • 通过CUBE枚举(os, device),(device, city)所有可能列为GROUPING SETS,语法如下:
select os,device, city, count(*) 
from requests
group by cube ((os, device), (device, city));
上述语句等效于如下语句:
select os,device, city, count(*)
from requests
group by grouping sets ((os, device, city),(os, device),(device,city),());
    • 返回结果如下:
+---------+--------+--------------+----------+
| os | device | city | count(*) |
+---------+--------+--------------+----------+
| linux | Phone | Beijing | 1 |
| windows | Phone | Shijiazhuang | 1 |
| windows | PC | Beijing | 2 |
| windows | PC | Shijiazhuang | 1 |
| linux | PC | Beijing | 1 |
| ios | Phone | Shijiazhuang | 1 |
| linux | Phone | NULL | 1 |
| windows | Phone | NULL | 1 |
| windows | PC | NULL | 3 |
| linux | PC | NULL | 1 |
| ios | Phone | NULL | 1 |
| NULL | Phone | Beijing | 1 |
| NULL | Phone | Shijiazhuang | 2 |
| NULL | PC | Beijing | 3 |
| NULL | PC | Shijiazhuang | 1 |
| NULL | NULL | NULL | 7 |
+---------+--------+--------------+----------+

GROUPING和GROUPING_ID函数

  • 功能介绍
    • GROUPING函数在GROUP BY子句使用GROUPING SETS、ROLLUP、或CUBE扩展时,GROUPING SETS结果中会使用NULL来充当占位符,导致无法区分占位符NULL与数据中真正的NULL。此时,您可以使用PolarDB-X提供的GROUPING函数来作区分。
      GROUPING函数接受一个列名作为参数,如果结果对应行使用了参数列做聚合,则结果返回0,此时意味着NULL来自输入数据。如果结果对应行未使用参数列做聚合,则返回1,此时意味着NULL来自GROUPING SETS结果中的占位符。
    • GROUPING_ID函数GROUPING_ID函数简化了GROUPING函数,用于确定ROLLBACK、CUBE或GROUPING SETS扩展的结果集中行的小计级别。GROUPING函数仅采用一个列表达式并返回一个值来指示行是否为给定列的所有值的小计。因此,当解释具有多个分组列的查询的小计级别时,可能需要多个 GROUPING函数。GROUPING_ID函数接受ROLLBACK、CUBE或GROUPINGSETS扩展中已使用的一个或多个列表达式,并返回单个整数,该整数可用于确定其中哪一列已聚合小计。
  • 语法
    • GROUPING函数
SELECT [ expr ...,] GROUPING( col_expr ) [, expr ] ...
FROM ...
GROUP BY { ROLLUP | CUBE | GROUPING SETS }( [...,] col_expr
[, ...] ) [, ...]

    • 说明 GROUPING函数采用单个参数,该参数必须是GROUP BY子句中ROLLUP、CUBE或GROUPING SETS扩展的表达式列表中指定的维度列的表达式。
    • GROUPING_ID函数
SELECT [ expr ...,]
GROUPING_ID( col_expr_1 [, col_expr_2 ] ... )
[, expr ] ...
FROM ...
GROUP BY { ROLLUP | CUBE | GROUPING SETS }( [...,] col_expr_1
[, col_expr_2 ] [, ...] ) [, ...]
  • 示例通过GROUPING_ID函数将多个列名作为参数,并将参数列的GROUPING结果按照Bitmap的方式组成整数,语法如下:
select a,b,c,count(*),
grouping(a) ga, grouping(b) gb, grouping(c) gc, grouping_id(a,b,c) groupingid
from (select 1 as a ,2 as b,3 as c)
group by cube(a,b,c);
  • 返回结果如下:
+------+------+------+----------+------+------+------+------------+
| a | b | c | count(*) | ga | gb | gc | groupingid |
+------+------+------+----------+------+------+------+------------+
| 1 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
| 1 | 2 | NULL | 1 | 0 | 0 | 1 | 1 |
| 1 | NULL | 3 | 1 | 0 | 1 | 0 | 2 |
| 1 | NULL | NULL | 1 | 0 | 1 | 1 | 3 |
| NULL | 2 | 3 | 1 | 1 | 0 | 0 | 4 |
| NULL | 2 | NULL | 1 | 1 | 0 | 1 | 5 |
| NULL | NULL | 3 | 1 | 1 | 1 | 0 | 6 |
| NULL | NULL | NULL | 1 | 1 | 1 | 1 | 7 |
+------+------+------+----------+------+------+------+------------+
相关文章
|
关系型数据库
Pg库增加&修改字段
Pg库增加&修改字段
352 0
|
存储 Kubernetes 关系型数据库
在Kubernetes中,helm是什么?如何使用?
【4月更文挑战第9天】在Kubernetes中,helm是什么?如何使用?
1189 5
|
机器学习/深度学习 人工智能 并行计算
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat 是一款革命性的平台,专为简化和加速类ChatGPT模型的训练而设计。通过一键式脚本,用户可以轻松完成从预训练模型到生成自定义ChatGPT模型的全过程。该系统复刻了InstructGPT的RLHF训练方法,并集成了一系列优化技术,如DeepSpeed Hybrid Engine,大幅提升了训练效率和经济性。使用DeepSpeed Chat,即使是拥有数千亿参数的大模型,也能在短时间内完成训练,且成本显著降低。无论是单GPU还是多GPU集群环境,DeepSpeed Chat都能提供卓越的性能和易用性,让RLHF训练变得更加普及。
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
|
Prometheus 监控 Kubernetes
青团社:亿级灵活用工平台的云原生架构实践
青团社是国内领先的一站式灵活用工招聘服务企业,灵活用工行业的 Top1。青团社于 2013 年在杭州成立,业务已经覆盖全国,在行业深耕 10 年。我的分享将分为以下三部分:青团社架构演进的历程、青团社如何实现云原生、总结与展望。
262777 97
pyqt6 制作一个颜色调节器 02
本文介绍了如何使用PyQt6实现一个颜色调节器。首先创建了一个显示RGB颜色值变化的标签,然后通过三个旋钮(QDial)分别控制红、绿、蓝三种颜色的值,并在旋钮下方显示当前值。通过嵌套布局实现了旋钮和标签的排列,最终实现了颜色值的变化和显示。完整代码也一并提供。
263 0
|
存储 分布式计算 监控
日志数据投递到MaxCompute最佳实践
日志服务采集到日志后,有时需要将日志投递至MaxCompute的表中进行存储与分析。本文主要向用户介绍将数据投递到MaxCompute完整流程,方便用户快速实现数据投递至MaxCompute。
447 2
|
人工智能 自然语言处理 测试技术
「AIGC」 华为CodeArts Snap详解
**CodeArts Snap** 是华为的人工智能编程助手,它能自动生成代码、解释代码和创建测试用例。例如,在Python GCD函数场景中,它根据自然语言描述写出函数,解释`x, y = y, x % y`的辗转相除法原理,并生成单元测试以确保代码正确性。此工具提升开发效率,尤其对初学者是极好的学习资源。
502 0
「AIGC」 华为CodeArts Snap详解
|
缓存 关系型数据库 MySQL
postgresql|数据库|序列Sequence的创建和管理
postgresql|数据库|序列Sequence的创建和管理
548 0
|
自然语言处理 达摩院 搜索推荐
阿里推出文本搜索排序新技术,登顶国际权威NLP榜单MS MARCO
3月28日,阿里巴巴团队以0.450的得分,刷新了国际权威自然语言处理(NLP)榜单MS MARCO短文本检索排序任务历史纪录。据悉,搜索团队最新研发的文本检索及排序技术已通过阿里云智能开放搜索OpenSearch产品对外输出。
1422 0
阿里推出文本搜索排序新技术,登顶国际权威NLP榜单MS MARCO
|
前端开发 Java 网络安全
解决docker中运行的jar包连不上前端程序
解决docker中运行的jar包连不上前端程序