一、同步
1.1 同步(协调)
- 同步就是协同步调,按预定的先后次序进行运行。如:你说完,我再说。
- "同"字从字面上容易理解为一起动作。
- 其实不是,"同"字应是指协同、协助、互相配合。
- 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B执行,再将结果给A;A再继续操作。
1.2 解决线程同时修改全局变量的方式
对于上一小节提出的那个计算错误的问题,可以通过线程同步来进行解决
思路,如下:
- 系统调用t1,然后获取到g_num的值为0,此时上一把锁,即不允许其他线程操作g_num
- t1对g_num的值进行+1
- t1解锁,此时g_num的值为1,其他的线程就可以使用g_num了,而且是g_num的值不是0而是1
- 同理其他线程在对g_num进行修改时,都要先上锁,处理完后再解锁,在上锁的整个过程中不允许其他线程访问,就保证了数据的正确性
二、互斥锁(重点)
当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制。
线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。
互斥锁为资源引入一个状态:锁定/非锁定
某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。
2.1 threading模块中定义了Lock类
threading模块中定义了Lock类,可以方便的处理锁定:
# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()
注意:
- 如果这个锁之前是没有上锁的,那么acquire不会堵塞
- 如果在调用acquire对这个锁上锁之前,它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止
2.2 使用互斥锁解决资源竞争
2.2.1 互斥锁在for循环外面
import threading
import time
# 定义一个全局变量
g_num = 0
def test1(num):
global g_num
# 上锁,如果之前没有被上锁,那么此时 上锁成功
# 如果上锁之前 已经被上锁了,那么此时会堵塞在这里,直到 这个锁被解开位置
mutex.acquire()
for i in range(num):
g_num += 1
mutex.release() # 解锁
print("-----in test1 g_num=%d----" % g_num)
def test2(num):
global g_num
mutex.acquire() # 上锁
for i in range(num):
g_num += 1
mutex.release() # 解锁
print("-----in test2 g_num=%d=----" % g_num)
# 创建一个互斥锁,默认是没有上锁的
mutex = threading.Lock()
def main():
t1 = threading.Thread(target=test1, args=(1000000,))
t2 = threading.Thread(target=test2, args=(1000000,))
t1.start()
t2.start()
# 等待上面的2个线程执行完毕....
time.sleep(2)
print("-----in main Thread g_num = %d---" % g_num)
if __name__ == "__main__":
main()
运行结果:
-----in test1 g_num=1000000----
-----in test2 g_num=2000000=----
-----in main Thread g_num = 2000000---
2.2.2 互斥锁在for循环里面
上锁,上的代码越少越好。
import threading
import time
# 定义一个全局变量
g_num = 0
def test1(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print("---test1---g_num=%d"%g_num)
def test2(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print("---test2---g_num=%d"%g_num)
# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()
# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000,))
p1.start()
p2 = threading.Thread(target=test2, args=(1000000,))
p2.start()
# 等待计算完成
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
运行结果:
---test1---g_num=1909909
---test2---g_num=2000000
2个线程对同一个全局变量操作之后的最终结果是:2000000
可以看到最后的结果,加入互斥锁后,其结果与预期相符。
2.3 上锁解锁过程
- 当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。
- 每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。
- 线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
2.4 总结
锁的好处:
- 确保了某段关键代码只能由一个线程从头到尾完整地执行
锁的坏处:
- 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
- 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁。