Python数据分析与展示:图像的手绘效果-5

简介: Python数据分析与展示:图像的手绘效果-5

简单实例

为了看到图片效果,代码拆开显示


# -*- coding: utf-8 -*-
# @File    : image_demo.py
# @Date    : 2018-05-06
# pillow 5.1.0 -> 4.0.0
from PIL import Image
import numpy as np

image.png

bigsea.jpg


# 读取图片
img = Image.open("images/bigsea.jpg")
print(img)
# <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1200x750 at 0x10105BE48>
# 转为多维数组
a = np.array(img)
print(a.shape, a.dtype)
# (750, 1200, 3) uint8
b = [255, 255, 255 ] - a
# 转为图像
im = Image.fromarray(b.astype("uint8"))
# 保存
im.save("images/bigsea1.jpg")

image.png

bigsea1.jpg


# 彩色图片转灰色
c = np.array(img.convert("L"))
print(c.shape, c.dtype)
# (750, 1200) uint8
d = 255 - c  # 取反
im2 = Image.fromarray(d.astype("uint8"))
im2.save("images/bigsea2.jpg")

image.png

bigsea2.jpg


# 区间变换
e = (100/255)*c + 150  
im3 = Image.fromarray(e.astype("uint8"))
im3.save("images/bigsea3.jpg")

image.png

bigsea3.jpg


# 像素平方
f = 255 * (c/255)*2 
im4 = Image.fromarray(f.astype("uint8"))
im4.save("images/bigsea4.jpg")

image.png

bigsea4.jpg


图像的手绘效果

# -*- coding: utf-8 -*-
# @File    : 图像手绘效果.py
# @Date    : 2018-05-06
from PIL import Image
import numpy as np
a = np.asarray(Image.open('images/bigsea.jpg').convert('L')).astype('float')
depth = 10.  # (0-100)
grad = np.gradient(a)  # 取图像灰度的梯度值
grad_x, grad_y = grad  # 分别取横纵图像梯度值
grad_x = grad_x * depth / 100.
grad_y = grad_y * depth / 100.
A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.)
uni_x = grad_x / A
uni_y = grad_y / A
uni_z = 1. / A
vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值
vec_az = np.pi / 4.  # 光源的方位角度,弧度值
dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对x 轴的影响
dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对y 轴的影响
dz = np.sin(vec_el)  # 光源对z 轴的影响
b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化
b = b.clip(0, 255)
im = Image.fromarray(b.astype('uint8'))  # 重构图像
im.save('images/beijingHD.jpg')

image.png

beijingHD.jpg

相关文章
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
187 3
|
5月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
588 0
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
4月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
303 2
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
509 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
964 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
12月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
571 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别

推荐镜像

更多