- 4. 代码演示
- 4.1 初始化工作
- 4.2 本地扣库存和统一扣库存
- 4.3 响应用户信息
- 4.4 单机服务压测
- 5.总结回顾
4. 代码演示
Go语言原生为并发设计,我采用go语言给大家演示一下单机抢票的具体流程。
4.1 初始化工作
go包中的init函数先于main函数执行,在这个阶段主要做一些准备性工作。我们系统需要做的准备工作有:初始化本地库存、初始化远程redis存储统一库存的hash键值、初始化redis连接池;另外还需要初始化一个大小为1的int类型chan,目的是实现分布式锁的功能,也可以直接使用读写锁或者使用redis等其他的方式避免资源竞争,但使用channel更加高效,这就是go语言的哲学:不要通过共享内存来通信,而要通过通信来共享内存 。redis库使用的是redigo,下面是代码实现:
... //localSpike包结构体定义 package localSpike type LocalSpike struct { LocalInStock int64 LocalSalesVolume int64 } ... //remoteSpike对hash结构的定义和redis连接池 package remoteSpike //远程订单存储健值 type RemoteSpikeKeys struct { SpikeOrderHashKey string //redis中秒杀订单hash结构key TotalInventoryKey string //hash结构中总订单库存key QuantityOfOrderKey string //hash结构中已有订单数量key } //初始化redis连接池 func NewPool() *redis.Pool { return &redis.Pool{ MaxIdle: 10000, MaxActive: 12000, // max number of connections Dial: func() (redis.Conn, error) { c, err := redis.Dial("tcp", ":6379") if err != nil { panic(err.Error()) } return c, err }, } } ... func init() { localSpike = localSpike2.LocalSpike{ LocalInStock: 150, LocalSalesVolume: 0, } remoteSpike = remoteSpike2.RemoteSpikeKeys{ SpikeOrderHashKey: "ticket_hash_key", TotalInventoryKey: "ticket_total_nums", QuantityOfOrderKey: "ticket_sold_nums", } redisPool = remoteSpike2.NewPool() done = make(chan int, 1) done <- 1 }
4.2 本地扣库存和统一扣库存
本地扣库存逻辑非常简单,用户请求过来,添加销量,然后对比销量是否大于本地库存,返回bool值:
package localSpike //本地扣库存,返回bool值 func (spike *LocalSpike) LocalDeductionStock() bool{ spike.LocalSalesVolume = spike.LocalSalesVolume + 1 return spike.LocalSalesVolume < spike.LocalInStock }
注意这里对共享数据LocalSalesVolume的操作是要使用锁来实现的,但是因为本地扣库存和统一扣库存是一个原子性操作,所以在最上层使用channel来实现,这块后边会讲。统一扣库存操作redis,因为redis是单线程的,而我们要实现从中取数据,写数据并计算一些列步骤,我们要配合lua脚本打包命令,保证操作的原子性:
package remoteSpike ...... const LuaScript = ` local ticket_key = KEYS[1] local ticket_total_key = ARGV[1] local ticket_sold_key = ARGV[2] local ticket_total_nums = tonumber(redis.call('HGET', ticket_key, ticket_total_key)) local ticket_sold_nums = tonumber(redis.call('HGET', ticket_key, ticket_sold_key)) -- 查看是否还有余票,增加订单数量,返回结果值 if(ticket_total_nums >= ticket_sold_nums) then return redis.call('HINCRBY', ticket_key, ticket_sold_key, 1) end return 0 ` //远端统一扣库存 func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool { lua := redis.NewScript(1, LuaScript) result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey)) if err != nil { return false } return result != 0 }
我们使用hash结构存储总库存和总销量的信息,用户请求过来时,判断总销量是否大于库存,然后返回相关的bool值。在启动服务之前,我们需要初始化redis的初始库存信息:
hmset ticket_hash_key "ticket_total_nums" 10000 "ticket_sold_nums" 0
4.3 响应用户信息
我们开启一个http服务,监听在一个端口上:
package main ... func main() { http.HandleFunc("/buy/ticket", handleReq) http.ListenAndServe(":3005", nil) }
上面我们做完了所有的初始化工作,接下来handleReq的逻辑非常清晰,判断是否抢票成功,返回给用户信息就可以了。
package main //处理请求函数,根据请求将响应结果信息写入日志 func handleReq(w http.ResponseWriter, r *http.Request) { redisConn := redisPool.Get() LogMsg := "" <-done //全局读写锁 if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) { util.RespJson(w, 1, "抢票成功", nil) LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10) } else { util.RespJson(w, -1, "已售罄", nil) LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10) } done <- 1 //将抢票状态写入到log中 writeLog(LogMsg, "./stat.log") } func writeLog(msg string, logPath string) { fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644) defer fd.Close() content := strings.Join([]string{msg, "\r\n"}, "") buf := []byte(content) fd.Write(buf) }
前边提到我们扣库存时要考虑竞态条件,我们这里是使用channel避免并发的读写,保证了请求的高效顺序执行。我们将接口的返回信息写入到了./stat.log文件方便做压测统计。
4.4 单机服务压测
开启服务,我们使用ab压测工具进行测试:
ab -n 10000 -c 100 http://127.0.0.1:3005/buy/ticket
下面是我本地低配mac的压测信息
This is ApacheBench, Version 2.3 <$Revision: 1826891 $> Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/ Licensed to The Apache Software Foundation, http://www.apache.org/ Benchmarking 127.0.0.1 (be patient) Completed 1000 requests Completed 2000 requests Completed 3000 requests Completed 4000 requests Completed 5000 requests Completed 6000 requests Completed 7000 requests Completed 8000 requests Completed 9000 requests Completed 10000 requests Finished 10000 requests Server Software: Server Hostname: 127.0.0.1 Server Port: 3005 Document Path: /buy/ticket Document Length: 29 bytes Concurrency Level: 100 Time taken for tests: 2.339 seconds Complete requests: 10000 Failed requests: 0 Total transferred: 1370000 bytes HTML transferred: 290000 bytes Requests per second: 4275.96 [#/sec] (mean) Time per request: 23.387 [ms] (mean) Time per request: 0.234 [ms] (mean, across all concurrent requests) Transfer rate: 572.08 [Kbytes/sec] received Connection Times (ms) min mean[+/-sd] median max Connect: 0 8 14.7 6 223 Processing: 2 15 17.6 11 232 Waiting: 1 11 13.5 8 225 Total: 7 23 22.8 18 239 Percentage of the requests served within a certain time (ms) 50% 18 66% 24 75% 26 80% 28 90% 33 95% 39 98% 45 99% 54 100% 239 (longest request)
根据指标显示,我单机每秒就能处理4000+的请求,正常服务器都是多核配置,处理1W+的请求根本没有问题。而且查看日志发现整个服务过程中,请求都很正常,流量均匀,redis也很正常:
//stat.log ... result:1,localSales:145 result:1,localSales:146 result:1,localSales:147 result:1,localSales:148 result:1,localSales:149 result:1,localSales:150 result:0,localSales:151 result:0,localSales:152 result:0,localSales:153 result:0,localSales:154 result:0,localSales:156 ...
5.总结回顾
总体来说,秒杀系统是非常复杂的。我们这里只是简单介绍模拟了一下单机如何优化到高性能,集群如何避免单点故障,保证订单不超卖、不少卖的一些策略,完整的订单系统还有订单进度的查看,每台服务器上都有一个任务,定时的从总库存同步余票和库存信息展示给用户,还有用户在订单有效期内不支付,释放订单,补充到库存等等。
我们实现了高并发抢票的核心逻辑,可以说系统设计的非常的巧妙,巧妙的避开了对DB数据库IO的操作,对Redis网络IO的高并发请求,几乎所有的计算都是在内存中完成的,而且有效的保证了不超卖、不少卖,还能够容忍部分机器的宕机。我觉得其中有两点特别值得学习总结:
- 负载均衡,分而治之。通过负载均衡,将不同的流量划分到不同的机器上,每台机器处理好自己的请求,将自己的性能发挥到极致,这样系统的整体也就能承受极高的并发了,就像工作的的一个团队,每个人都将自己的价值发挥到了极致,团队成长自然是很大的。
- 合理的使用并发和异步。自epoll网络架构模型解决了c10k问题以来,异步越来被服务端开发人员所接受,能够用异步来做的工作,就用异步来做,在功能拆解上能达到意想不到的效果,这点在nginx、node.js、redis上都能体现,他们处理网络请求使用的epoll模型,用实践告诉了我们单线程依然可以发挥强大的威力。服务器已经进入了多核时代,go语言这种天生为并发而生的语言,完美的发挥了服务器多核优势,很多可以并发处理的任务都可以使用并发来解决,比如go处理http请求时每个请求都会在一个goroutine中执行,总之:怎样合理的压榨CPU,让其发挥出应有的价值,是我们一直需要探索学习的方向。