Dijkstra(迪杰斯特拉算法)的实现(C,C++,Matlab)

简介: Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。二.算法描述💡算法思想设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增

Dijkstra

一.算法背景

Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

二.算法描述

💡算法思想

设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),

第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增次序依次把第二组中的顶点加入S中。在加入的过程中,总保持从源点v到S中各个顶点的最短路径长度不大于从源点v到U中任何路径的长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前路径的最短长度。

算法步骤

a.初始时,只包括源点,即S = {v},v的距离为0。U包含除v以外的其他顶点,即:U ={其余顶点},若v与U中顶点u有边,则(u,v)为正常权值,若u不是v的出边邻接点,则(u,v)权值 ∞;

b…从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画

网络异常,图片无法展示
|

三:时间复杂度

设图的边数为 m,顶点数为 n。

Dijkstra 算法最简单的实现方法是用一个数组来存储所有顶点的dis[] 时间复杂度为O(n^2)

对于边数少于n^{2}的稀疏图来说,我们可以用邻接表来更有效的实现该算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来查找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为{\displaystyle O((m+n)logn)},斐波纳契堆能稍微提高一些性能,让算法运行时间达到{\displaystyle O(m+nlogn)}。然而,使用斐波纳契堆进行编程,常常会由于算法常数过大而导致速度没有显著提高。

四.算法缺点

算法限制要求:无负权值

无法求出任意两点路径(求任意两点 为 弗洛伊德算法(floyd))

五.算法实例

给出一个无向图

网络异常,图片无法展示
|

用Dijkstra算法找出以A为起点的单源最短路径步骤如下:

网络异常,图片无法展示
|

六.代码实现\

以下为 C,C++,Matlab 语言的代码作为示例

C语言 例题:sdut 3562 Proxy (迪杰斯特拉+反向建树)

#include<stdio.h>
#include<string.h>
#define N 1002
#define Min(a,b) a>b?b:a
#define INF 1000000
int dis[N],bj[N];
int mp[N][N];int n;
void djsk(int v)
{
    int i,j,k,min;
    for(i=0;i<=n;i++)
    dis[i]=mp[v][i];//初始化dis数组 dis[i]=5代表从起始点到i点的最短距离 
     dis[v]=0;// v  代表起始节点 自己到自己为0 
     bj[v]=1;// 标记 已找到短路 
      for(i=0;i<=n;i++)// i 代表已经找到的最短路条数 
      {
        min=INF;k=0; 
        for(j=0;j<=n;j++)//从未找到最短路径元素中找一个路径最短的 
        if(!bj[j]&&dis[j]<min)min=dis[j],k=j;
        bj[k]=1;// 标记 已找到短路 
         for(j=0;j<=n+1;j++)//用但前最短路节点更新未找到最短路的节点 
         if(!bj[j]&&dis[j]>(dis[k]+mp[k][j]))dis[j]=dis[k]+mp[k][j];
      }
}

C语言_优化(队列) 例题: sdut 3562 Proxy迪杰斯特拉+反向建树

#include<stdio.h>
#include<string.h>
#define N 1002
#define Min(a,b) a>b?b:a
#define INF 1000000
int dis[N],s[2][N];
int mp[N][N];int n;
void djsk(int v){
    int i,j,k,min,q=0,d=0,c=0;
    for(i=0;i<=n;i++)
  s[c][q++]=i,dis[i]=mp[v][i];//初始化dis数组 dis[i]=5代表从起始点到i点的最短距离 
     dis[v]=0;// v  代表起始节点 自己到自己为0 
      while(q)//没有未找到最短路的元素
      {
        min=INF;k=-1; 
        for(j=0;j<q;j++)//从未找到最短路径元素中找一个路径最短的 
        if(dis[s[c%2][j]]<min)
        { min=dis[s[c%2][j]];
        if(k!=-1)s[(c+1)%2][d++]=k;
           k=s[c%2][j];
        }
         else s[(c+1)%2][d++]=s[c%2][j];
         if(q==d)break;//寻找无改变 则未联通
         for(j=0;j<d;j++)//用但前最短路节点更新未找到最短路的节点 
         if(dis[s[(c+1)%2][j]]>(dis[k]+mp[k][s[(c+1)%2][j]]))dis[s[(c+1)%2][j]]=dis[k]+mp[k][s[(c+1)%2][j]];
         c=(c+1)%2;q=d;d=0;//交换层次
      }
}

C++语言

const int  INT = 32767;
const int MAX = 10;
int dis[MAX];
int path[MAX];
int A[MAX][MAX];
void Dijk(int v){
    bool S[MAX];                                  // 判断是否已存入该点到S集合中
      int n=MAX;
    for(int i=1; i<=n; ++i)
    {
        dis[i] = A[v][i];
        S[i] = false;                                // 初始化
          path[i] = v;
     }
     dis[v] = 0; S[v] = true;   
    for(int i=2; i<=n; i++){
         int mindist = INT;
         int u = v;                               // 找出当前未使用的点j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dis[j]<mindist)
            {
                  u = j;                             // u保存当前邻接点中距离最小的点的号码 
                  mindist = dis[j];
            }
         S[u] = true; 
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]<INT)
             {
                 if(dis[u] + A[u][j] < dis[j])     //在通过新加入的u点路径找到离v点更短的路径  
                 {
                     dis[j] = dis[u] + A[u][j];    //更新dist 
                     path[j] = u;                    //记录前驱顶点 
                  }
              }
     }
}

Matlab 语言

%迪杰斯特拉(单源)
%     最短距离 ,路径    距离矩阵 起始点 结束点
 function [res,index] = Djsk(mp,stat,ends)
     n=size(mp,1);
     %初始化
     bj=zeros(n,1); %标记初始化
     dis=mp(stat,:); %各点最短路距离初始化   
     path=ones(n,1),path=path.*stat;%各点最短路路径初始化 
     dis(stat)=0;bj(stat)=1;
   for i=1:n 
     min=Inf; k=1;%局部初始化
      for j=1:n %从未找到最短路径点集合中找一个路径最短的点
       if (bj(j)~=1)&&(dis(j)<min),min=dis(j);k=j;end
      end
       bj(k)=1;%标记已找到的点的最短路径
       for j=1:n %用但前最短路节点更新未找到最短路的节点(同时更新各点路径的前一个点,即父节点) 
           if (bj(j)~=1)&&(dis(j)>(dis(k)+mp(k,j))), dis(j)=dis(k)+mp(k,j);path(j)=k;end
       end
  end
%对要求最短路径进行处理   
tem=ends;index(1)=ends;i=2;
while path(tem)~=stat
    index(i)=path(tem);
    tem=path(tem);
    i=i+1;
end
index(i)=stat;index=index(length(index):-1:1);res=dis(ends);
end
目录
相关文章
|
6月前
|
存储 运维 监控
基于 C# 语言的 Dijkstra 算法在局域网内监控软件件中的优化与实现研究
本文针对局域网监控系统中传统Dijkstra算法的性能瓶颈,提出了一种基于优先队列和邻接表优化的改进方案。通过重构数据结构与计算流程,将时间复杂度从O(V²)降至O((V+E)logV),显著提升大规模网络环境下的计算效率与资源利用率。实验表明,优化后算法在包含1000节点、5000链路的网络中,计算时间缩短37.2%,内存占用减少21.5%。该算法适用于网络拓扑发现、异常流量检测、故障定位及负载均衡优化等场景,为智能化局域网监控提供了有效支持。
152 5
|
7月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
167 2
|
8月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
3月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
324 4
|
9月前
|
运维 监控 算法
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
|
4月前
|
算法 机器人 定位技术
基于机器视觉和Dijkstra算法的平面建筑群地图路线规划matlab仿真
本程序基于机器视觉与Dijkstra算法,实现平面建筑群地图的路径规划。通过MATLAB 2022A读取地图图像,识别障碍物并进行路径搜索,支持鼠标选择起点与终点,最终显示最优路径及长度,适用于智能导航与机器人路径规划场景。
|
5月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
155 0
|
7月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
193 17
|
6月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
170 4
|
6月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
176 0