一:网络前提条件-网络模型
user--->ingress--->service--->pod(业务都在里面 更新)
k8s组网要求
所有的Pods之间可以在不使用NAT网络地址转换的情况下相互通信
所有的Nodes之间可以在不使用NAT网络地址转换的情况下相互通信
每个Pod自己看到的自己的ip和其他Pod看到的一致
k8s网络模型设计原则
每个Pod都拥有一个独立的 IP地址,而且 假定所有 Pod 都在一个可以直接连通的、扁平的网络空间中 。
不管它们是否运行在同一个 Node (宿主机)中,都要求它们可以直接通过对方的 IP 进行访问。
设计这个原则的原因是,用户不需要额外考虑如何建立 Pod 之间的连接,也不需要考虑将容器端口映射到主机端口等问题。
由于 Kubemetes 的网络模型假设 Pod 之间访问时使用的是对方 Pod 的实际地址,所以一个Pod 内部的应用程序看到的自己的 IP 地址和端口与集群内其他 Pod 看到的一样。它们都是 Pod 实际分配的IP地址 (从dockerO上分配的)。将IP地址和端口在Pod内部和外部都保持一致, 我们可以不使用 NAT 来进行转换,地址空间也自然是平的。
二:各组件之间的网络互通
根据以上的一些要求,需要解决的问题
Docker容器和Docker容器之间的网络
Pod与Pod之间的网络
Pod与Service之间的网络
Internet与Service之间的网络
1.容器和容器之间的网络
pod中每个docker容器和pod在一个网络命名空间内,所以ip和端口等等网络配置,都和pod一样,主要通过一种机制就是,docker的一种网络模式,container,新创建的Docker容器不会创建自己的网卡,配置自己的 IP,而是和一个指定的容器共享 IP、端口范围等
2.pod与pod之间的网络
首先pod自身拥有一个IP地址,不同pod之间直接使用IP地址进行通信即可
同一台node节点上pod和pod通信:
pod1-->pod2(同一台node上),pod1通过自身eth0网卡发送数据,eth0连接着veth0,网桥把veth0和veth1组成了一个以太网,然后数据到达veth0之后,网桥通过转发表,发送给veth1,veth1直接把数据传给pod2的eth0
不同node节点上pod和pod通信
k8s集群中,每个node节点都会被分配一个CIDR块,(把网络前缀都相同的连续地址组成的地址组称为CIDR地址块)用来给node上的pod分配IP地址,另外还需要把pod的ip和所在nodeip进行关联
比如node1上pod1和node2上的pod4进行通信
首先pod1上网卡eth0将数据发送给已经管理到root命名空间的veth0上,被虚拟网桥收到,查看自己转发表之后,并没有pod4的mac地址。
就会把包转发到默认路由,(root命名空间的eth0上,也就是已经到了node节点的往卡上)通过eth0,发送到网络中。
寻址转发后包来到了node2,首先被root命名空间的eth0设备接受,查看目标地址是发往pod4的,交给虚拟网桥路由到veth1,最终传给pod4的eth0上。
也可以借助第三方网络插件来实现,常用有calico、flannel、contiv等
第三方组件参考
3.pod与service之间的网络
pod的ip地址是不持久的,当集群中pod的规模缩减或者pod故障或者node故障重启后,新的pod的ip就可能与之前的不一样的。所以k8s中衍生出来Service来解决这个问题。
Service管理了多个Pods,每个Service有一个虚拟的ip,要访问service管理的Pod上的服务只需要访问你这个虚拟ip就可以了,这个虚拟ip是固定的,当service下的pod规模改变、故障重启、node重启时候,对使用service的用户来说是无感知的,因为他们使用的service的ip没有变。
当数据包到达Service虚拟ip后,数据包会被通过k8s给该servcie自动创建的负载均衡器路由到背后的pod容器。
在k8s里,iptables规则是由kube-proxy配置,kube-proxy监视APIserver的更改,因为集群中所有service(iptables)更改都会发送到APIserver上,所以每台kubelet-proxy监视APIserver,当对service或pod虚拟IP进行修改时,kube-proxy就会在本地更新,以便正确发送给后端pod
pod到service包的流转:
数据包从pod1所在eth0离开,通过veth对的另一端veth0传给网桥cbr0,网桥找不到service的ip对应的mac,交给了默认路由,到达了root命名空间的eth0
root命名空间的eth0接受数据包之前会经过iptables进行过滤,iptables接受数据包后使用kube-proxy在node上配置的规则响应service,然后数据包的目的ip重写为service后端指定的pod的ip了
service到pod包的流转
收到包的pod会回应数据包到源pod,源ip是发送方ip,目标IP是接收方,数据包进行回复时经过iptables,iptables使用内核机制conntrack记住它之前做的选择,又将数据包源ip重新为service的ip,目标ip不变,然后原路返回至pod1的eth0
4.Internet与service之间的网络
node主机通过iptables的nat来解决
-
数据包源自pod1网络命名空间,通过veth对连接到root网络命名空间,紧接着,转发表里没有IP对应的mac,会发送到默认路由,到达root网络命名空间的eth0
-
那么在到达root网络明明空间之前,iptables会修改数据包,现在数据包源ip是pod1的,继续传输会被Internet网关拒绝掉,因为网关NAT仅转发node的ip,解决方案:使iptables执行源NAT更改数据包源ip,让数据包看起来是来自于node而不是pod
-
iptables修改完源ip之后,数据包离开node,根据转发规则发给Internet网关,Internet网关执行另一个NAT,内网ip转为公网ip,在Internet上传输。
-
数据包回应时,也是按照:Internet网关需要将公网IP转换为私有ip,到达目标node节点,再通过iptables修改目标ip并且最终传送到pod的eth0虚拟网桥。
Internet到k8s的流量
让Internet流量进入k8s集群,这特定于配置的网络,可以在网络堆栈的不同层来实现:
(1) NodePort
(2)Service LoadBalancer
(3)Ingress控制器。
第七层流量入口:Ingress Controller
通过一个公开的ip地址来公开多个服务,第7层网络流量入口是在网络堆栈的HTTP / HTTPS协议范围内运行,并建立在service之上。
工作:客户端现针对www.1234.com执行dns解析,DNS服务器返回ingress控制器的ip,客户端拿到ip后,向ingress控制器发送http的get请求,将域名加在host头部发送。控制器接收到请求后,从host头部就知道了该访问哪一个服务,通过与该service关联的endpoint对象查询podIP地址,将请求进行转发
第7层负载均衡器的一个好处是它们具有HTTP感知能力,因此它们了解URL和路径。 这允许您按URL路径细分服务流量。 它们通常还在HTTP请求的X-Forwarded-For标头中提供原始客户端的IP地址。