(4)FlinkSQL将socket数据写入到mysql方式一

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: (4)FlinkSQL将socket数据写入到mysql方式一。本章节主要演示从socket接收数据,通过滚动窗口每30秒运算一次窗口数据,然后将结果写入Mysql数据库

本章节主要演示从socket接收数据,通过滚动窗口每30秒运算一次窗口数据,然后将结果写入Mysql数据库
image.png
(1)准备一个实体对象,消息对象

package com.pojo;

import java.io.Serializable;

/**
 * Created by lj on 2022-07-05.
 */
public class WaterSensor implements Serializable {
    private String id;
    private long ts;
    private int vc;

    public WaterSensor(){

    }

    public WaterSensor(String id,long ts,int vc){
        this.id = id;
        this.ts = ts;
        this.vc = vc;
    }

    public int getVc() {
        return vc;
    }

    public void setVc(int vc) {
        this.vc = vc;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public long getTs() {
        return ts;
    }

    public void setTs(long ts) {
        this.ts = ts;
    }
}
AI 代码解读

(2)编写socket代码,模拟数据发送


package com.producers;

import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Random;

/**
 * Created by lj on 2022-07-05.
 */
public class Socket_Producer {
    public static void main(String[] args) throws IOException {

        try {
            ServerSocket ss = new ServerSocket(9999);
            System.out.println("启动 server ....");
            Socket s = ss.accept();
            BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
            String response = "java,1,2";

            //每 2s 发送一次消息
            int i = 0;
            Random r=new Random();   
            String[] lang = {"flink","spark","hadoop","hive","hbase","impala","presto","superset","nbi"};

            while(true){
                Thread.sleep(2000);
                response= lang[r.nextInt(lang.length)] + "," + i + "," + i+"\n";
                System.out.println(response);
                try{
                    bw.write(response);
                    bw.flush();
                    i++;
                }catch (Exception ex){
                    System.out.println(ex.getMessage());
                }

            }
        } catch (IOException | InterruptedException e) {
            e.printStackTrace();
        }
    }
}
AI 代码解读

(3)从socket端接收数据,并设置30秒触发执行一次窗口运算


package com.examples;

import com.pojo.WaterSensor;
import com.sinks.RetractStream_Mysql;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

import static org.apache.flink.table.api.Expressions.$;

/**
 * Created by lj on 2022-07-06.
 */

public class Flink_Group_Window_Tumble_Sink_Mysql {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        DataStreamSource<String> streamSource = env.socketTextStream("127.0.0.1", 9999,"\n");
        SingleOutputStreamOperator<WaterSensor> waterDS = streamSource.map(new MapFunction<String, WaterSensor>() {
            @Override
            public WaterSensor map(String s) throws Exception {
                String[] split = s.split(",");
                return new WaterSensor(split[0], Long.parseLong(split[1]), Integer.parseInt(split[2]));
            }
        });

        // 将流转化为表
        Table table = tableEnv.fromDataStream(waterDS,
                $("id"),
                $("ts"),
                $("vc"),
                $("pt").proctime());

        tableEnv.createTemporaryView("EventTable", table);

        Table result = tableEnv.sqlQuery(
                "SELECT " +
                        "id, " +                //window_start, window_end,
                        "COUNT(ts) ,SUM(ts)" +
                        "FROM TABLE( " +
                        "TUMBLE( TABLE EventTable , " +
                        "DESCRIPTOR(pt), " +
                        "INTERVAL '30' SECOND)) " +
                        "GROUP BY id , window_start, window_end"
        );

        tableEnv.toRetractStream(result, Row.class).addSink(new RetractStream_Mysql()); 
        env.execute();
    }
}
AI 代码解读

(4)定义一个写入到mysql的sink


package com.sinks;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.types.Row;

/**
 * Created by lj on 2022-07-06.
 */
public class RetractStream_Mysql  extends RichSinkFunction<Tuple2<Boolean, Row>> {

    private static final long serialVersionUID = -4443175430371919407L;
    PreparedStatement ps;
    private Connection connection;

    /**
     * open() 方法中建立连接,这样不用每次 invoke 的时候都要建立连接和释放连接
     *
     * @param parameters
     * @throws Exception
     */
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        connection = getConnection();
    }

    @Override
    public void close() throws Exception {
        super.close();
        //关闭连接和释放资源
        if (connection != null) {
            connection.close();
        }
        if (ps != null) {
            ps.close();
        }
    }

    /**
     * 每条数据的插入都要调用一次 invoke() 方法
     *
     * @param context
     * @throws Exception
     */
    @Override
    public void invoke(Tuple2<Boolean, Row> userPvEntity, Context context) throws Exception {
        String sql = "INSERT INTO flinkcomponent(componentname,componentcount,componentsum) VALUES(?,?,?);";
        ps = this.connection.prepareStatement(sql);

        ps.setString(1,userPvEntity.f1.getField(0).toString());
        ps.setInt(2, Integer.parseInt(userPvEntity.f1.getField(1).toString()));
        ps.setInt(3, Integer.parseInt(userPvEntity.f1.getField(2).toString()));
        ps.executeUpdate();
    }

    private static Connection getConnection() {
        Connection con = null;
        try {
            Class.forName("com.mysql.jdbc.Driver");
            con = DriverManager.getConnection("jdbc:mysql://localhost:3306/testdb?useUnicode=true&characterEncoding=UTF-8&useSSL=false","root","root");
        } catch (Exception e) {
            System.out.println("-----------mysql get connection has exception , msg = "+ e.getMessage());
        }
        return con;
    }
}
AI 代码解读

(5)效果演示,每30秒往数据库写一次数据
image.png

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
99
分享
相关文章
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为&#39;0&#39;或&#39;1&#39;,查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
253 43
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
41 9
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
90 9
MySQL进阶突击系列(09)数据磁盘存储模型 | 一行数据怎么存?
文中详细介绍了MySQL数据库中一行数据在磁盘上的存储机制,包括表空间、段、区、页和行的具体结构,以及如何设计和优化行数据存储以提高性能。
【YashanDB 知识库】MySQL 迁移至崖山 char 类型数据自动补空格问题
问题分类】功能使用 【关键字】char,char(1) 【问题描述】MySQL 迁移至崖山环境,字段类型源端和目标端都为 char(2),但应用存储的数据为'0'、'1',此时崖山查询该表字段时会自动补充空格 【问题原因分析】mysql 有 sql_mode 控制,检查是否启用了 PAD_CHAR_TO_FULL_LENGTH SQL 模式。如果启用了这个模式,MySQL 才会保留 CHAR 类型字段的尾随空格,默认没有启动。 #查看sql_mode mysql> SHOW VARIABLES LIKE 'sql_mode'; 【解决/规避方法】与应用确认存储的数据,正确定义数据
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
236 6
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
180 1