学习:常见图像匹配综述

简介: 学习:常见图像匹配综述

图像匹配基础


  图像模板匹配是指在源图像上定位给定参考图像以使它们最相似的技术。 它是视觉目标识别领域的一项基本任务。 一般来说,模板匹配方案有两个关键方面。 一种是相似度测量,另一种是最佳匹配位置搜索。 在这项工作中,我们选择众所周知的归一化互相关模型作为相似性标准。 最佳匹配位置的搜索过程是通过内部反馈人工蜂群 (IF-ABC) 算法进行的。  IF-ABC 算法的突出之处在于它努力对抗早熟收敛。 这一目的是通过摒弃ABC算法中传统的轮盘赌选择过程来实现的,从而在局部搜索阶段为每只被雇佣的蜜蜂提供平等的机会被围观的蜜蜂跟随。


  除此之外,我们还建议有效地利用内部收敛状态作为后续迭代循环中搜索强度的反馈指导。 我们研究了四个理想的模板匹配案例以及四个使用不同搜索算法的实际案例。 我们的模拟结果表明,IF-ABC 算法比传统的 ABC 算法和两种最先进的修改后的 ABC 算法更有效和更稳健地完成模板匹配任务



图像模板匹配模型


  一般来说,模板匹配涉及两个关键方面:相似性测量和最佳匹配搜索。 在测量相似度时,将源图像和预定义的模板图像叠加在某个位置,然后根据选择的模型或准则进行相似度评估。绝对差异之和(SAD), 平方差 (SSD) 和归一化互相关 (NCC) 都是流行的相似性测量模型。  SAD 对照明干扰很敏感,可能会导致强度值发生较大变化。  SSD 也有类似的缺点。  NCC 模型利用旋转和尺度不变评估相似度,并被证实比 SAD 和 SSD 更稳健,特别是在源图像中的均匀光照变化方面。因此,NCC 模型比其他两个模型应用更广泛。 关于最佳匹配位置的搜索策略,作为一项开创性工作,提出了一种彻底的搜索算法,其中检查所有像素候选位置,直到找到具有最大相似性的位置。 然而,这种详尽的搜索在计算上是昂贵的,这限制了它的应用,特别是在一些实时识别问题方面。


  为了降低模板匹配方案的计算复杂度,开发了基于进化算法的搜索策略,并研究了基于物种的遗传算法(Sb-GA)、蝙蝠算法(BA)、混沌 为此,已经提出了量子行为粒子群优化 (CQ-PSO)、混沌帝国主义竞争算法 (C-ICA)和物质状态搜索 (SMS) 算法模板匹配问题。 虽然这些算法旨在减少全局最优搜索的计算量,但它们无法避免次优匹配结果的推导。


  值得指出的是,大多数进化算法普遍适用于凸或近凸函数的优化。 但是模板匹配字段包含有限数量的候选匹配位置。这种离散函数通常不是平滑的。换句话说,关于模板匹配的目标函数可能会沿着域剧烈振荡,这严重限制了这种进化算法的优势。 因此,它需要一种新的方法来修改这些现有的进化算法,以适应目标函数中的离散性和振荡。

例图如下:

image.png



相关文章
|
计算机视觉 Python
最快速度写出一个识别效果——OpenCV模板匹配(含代码)
最快速度写出一个识别效果——OpenCV模板匹配(含代码)
1254 0
|
计算机视觉 Python
OpenCV多模板匹配讲解与匹配汽车实战(附Python源码)
OpenCV多模板匹配讲解与匹配汽车实战(附Python源码)
535 0
OpenCV多模板匹配讲解与匹配汽车实战(附Python源码)
|
3月前
|
数据可视化 算法 数据挖掘
HiChIP 数据分析: 分析简介
HiChIP 数据分析: 分析简介
HiChIP 数据分析: 分析简介
|
1月前
|
Windows
Microsoft Activation Scripts v3.6 (MAS)激活工具安装教程!中文汉化版(激活工具)
Microsoft Activation Scripts v3.6(MAS)是一款开源、轻量级的批量激活工具,支持HWID、KMS38、TSforge等多种方式,可离线永久激活Win7至Win11及Office全系列。兼容旧系统如Vista,操作简单,无误报风险。
2395 0
|
数据挖掘 PyTorch 算法框架/工具
人脸识别中的损失函数ArcFace及其实现过程代码(pytorch)--理解softmax损失函数及Arcface
人脸识别中的损失函数ArcFace及其实现过程代码(pytorch)--理解softmax损失函数及Arcface
1559 0
kde
|
4月前
|
文件存储 数据安全/隐私保护 开发者
群晖NAS Docker镜像源加速配置教程
本教程介绍了群晖NAS用户如何通过配置轩辕镜像加速服务提升Docker镜像拉取速度。内容包括配置前准备、详细设置步骤及日常使用说明,帮助用户快速完成配置并享受高效稳定的镜像下载体验。
kde
3011 59
基于电压矢量变换的锁相环simulink建模与仿真
本课题基于电压矢量变换的锁相环(PLL)在MATLAB2022a中进行Simulink建模与仿真。该模型通过ab坐标变换和低通滤波,实现对三相电网电压的快速准确锁相,尤其在电压不平衡条件下表现优异。系统仿真结果显示,PLL能有效提取基波正序电压分量,适用于负序电压前馈控制及双序电流环控制策略。相比传统单相PLL,该方法更稳健地应对电网不平衡和频率突变,广泛应用于电力质量监测、三相PFC电路控制及分布式发电系统的并网控制等领域。
|
6月前
|
Linux Docker Windows
Docker Compose
Docker Compose
701 29
|
Linux C++ iOS开发
【C++ 17 新特性 文件管理】探索C++ Filesystem库:文件和目录操作的全面指南(二)
【C++ 17 新特性 文件管理】探索C++ Filesystem库:文件和目录操作的全面指南
1814 2
|
算法 API 计算机视觉
【原理解密】多角度、多尺度、多目标的边缘模板匹配
【原理解密】多角度、多尺度、多目标的边缘模板匹配
856 0