数据服务系统0到1落地实现方案

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 基于业务场景做好服务的划分和设计,以及公共服务的基础构建,确保业务层的架构合理且可扩展,是否合理的基本考量就是,不断的新增业务场景是否需要做系统的大刀阔斧的改版,如果服务能力不断丰富,系统的改造成本很小,自然架构合理。

一、基于业务

数据服务通常有很多种业务模式,也就导致系统的架构与业务都会很复杂,不同的业务都具有自身的能力和复杂度,数据管理本身就是一件不容易的事情,所以在系统架构初期都会考虑服务能力的业务场景:

17-1.png

API服务:基于Http模式的数据服务,通过请求获取数据,例如风控模型,评分,反欺诈等各种业务;

平台服务:综合性的服务能力集成系统,客户的自定义服务需求很低,具有完整流程的数据服务能力,例如自动化数字营销平台,提供营销的全流程管理能力;

采集服务:通常客户以埋点的方式提交相关点击事件,采集系统基于全渠道进行汇总分析并向客户反馈;

可视化分析:这里分为两大块,数据分析与可视化,数据可以加载多方数据源联合分析,基于前端组件做高度自动化分析,例如常见的数据洞察系统;

工具私有化:基于积累的技术能力,把数据管理的系统直接销售给客户,部署在客户自己本地的服务上;

数据服务的场景,不同的业务需要各自场景下的数据支撑,但是不同的业务都需要相同的运营,结算,订单等基础功能,理解不同的业务场景,需要找出共同点与不同点,很简单的思路:相同点在公共服务中开发,业务不同点在独立的服务中开发,方便系统的不断扩展与演进。

二、业务层架构

不同的数据服务能力,最大的不同点就是需要依赖核心数据的支撑,从业务层面看系统架构层,还需要的功能复杂公共功能,这些需要在架构初期就考虑好,不然随着业务发展很快就要面临重构问题。

17-2.png

客户运营:每个客户的接入都需要一套完整的流程,服务说明,计费规则,合同管理,充值,服务开通停用,账单等一系列配套功能,通常都有两个入口:客户登录端,服务方运营端。

支付结算:功能最复杂的系统模块,提供支付能力,例如聚合多个支付渠道,用来解决客户的充值退款,或者服务方自己的支付需求,并提供各种结算账单的数据输出,对账平账能力。

订单管理:客户的每次请求,或者每个服务的使用,产生的计费动作都需要详细的订单记录,涉及单价,单号,时间很多关键因素,作为结算的核心依据,也是业务数据最集中爆发的地方。

权限体系:在数据服务体系中,权限系统的设计更侧重解决公司主体层面的需求,不同的商务团队负责不同的服务运营,客户管理等,所以需要清晰的体系化权限管理,给不同的角色的商务人员分配合理的权限。

日志集成:在详细的日志体系中,正常的业务日志数据可以用来在服务异常时的数据补全分析,异常的日志数据可以给开发用来分析系统问题和瓶颈不断的优化服务能力。

基于业务场景做好服务的划分和设计,以及公共服务的基础构建,确保业务层的架构合理且可扩展,是否合理的基本考量就是,不断的新增业务场景是否需要做系统的大刀阔斧的改版,如果服务能力不断丰富,系统的改造成本很小,自然架构合理。

三、数据中心

不同的业务服务场景需要依赖核心数据能力,这是服务卖点,通常会把支撑服务能力的核心数据单独部署并提供各种服务场景,通常理解为数据中心,同时业务服务自身也会产生各种数据,这里会根据服务的部署方式独立存储。

17-3.png

服务能力:数据中心作为多个业务公共依赖,不但要提供数据基础的查询能力,在处理海量数据任务时,还需要提供一定的调度和计算机制。

部署方式:根据数据特点通常会以集群、分库分表、OLAP引擎、数仓等多种方式存储,并根据数据特点提供统一的服务能力对业务层开放。

数据更新:数据是需要实时或者定时更新,数据来源通常是经过大数据计算和处理后的各种数据,还有就是业务层校验有误的数据,或者在使用过程不断优化的数据。

数据中心的独立架构部署是非常有必要的操作,大部分的数据都是具有联动性的,数据间的联动处理完全不用耦合到业务层面,数据的流动校正安全性管理等等都可以在数据中心统一管理,规避掉数据混合部署带来的系列复杂问题。

四、大数据底层

数据服务能力的最底层需要海量数据处理的能力做支撑,所以用到很多大数据组件技术,对数据做存储、计算、分析、搬运等等操作。

17-4.png

数据存储:大数据底层最常见的存储就是文件形式,结构化的数据库存储,半结构化的日志型文件,还有一些非结构化数据。

计算能力:对于海量数据的处理需要依赖各种并行计算,离线任务,实时计算等多种方式,达到快速处理的目的。

数据搬运:数据处理完成之后并不会在底层直接提供服务能力,通常会把数据同步到上面数据中心,在对业务提供服务能力,这里搬运可以是数据输出,也可能是待处理的数据输入。

大数据的底层组件则是系统的核心能力,对数据的精准计算分析确保服务的能力,并且不断的对现有架构做自动化和工具化管理,这点非常重要,海量数据管理的流程人工介入越多则说明效率越低下,尤其在底层向数据中心推送数据或者数据接收的过程,需要约定好策略保证数据安全稳定的自动传输。

五、整体考虑

对一个复杂系统的设计,首先最关键的就是清晰的整理出业务模式,对业务模式进行分析,根据业务特点做系统架构可以避免很多弯路,例如上面的数据服务系统:

17-5.png

首先从大的层面看,系统拆分业务服务,数据中心,大数据底层能力这三大块,并且要求各个大模块之间不存在强耦合关系,确保模块之间可以独立的扩展;

其次确定各个模块需要的实现的核心功能,业务层保证基本的服务能力,然后把每个业务都需要的基础功能向下抽取封装,拆分出业务服务和公共服务,支撑业务能力;

然后确定各个模块之间协作的方式,例如业务与数据中心的通信能力,接口标准,数据安全等细节,或者数据中心与底层大数据之间的数据搬运模式,确保数据流通能力;

最后各个模块具体的细节实现,这里需要考量的就是根据业务模式,如果可以选择相同的组件和架构方式,尽量统一架构选型和组件依赖,降低不同模块之间的壁垒;

上述完整的系统架构从开始搭建到提供稳定的服务能力,大概耗时七个月的时间,期间不断的演进和升级,并且不断上线新的服务模块并进行系统监控,直至业务服务相对完善和系统相对稳定。

END


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
存储 监控 安全
SaaS业务架构:业务能力分析
【9月更文挑战第20天】在数字化时代,软件即服务(SaaS)模式逐渐成为企业软件解决方案的首选。SaaS 业务架构设计对于提供高效、可靠的服务至关重要。其核心业务能力包括:用户管理(注册登录、角色权限)、数据管理(存储备份、安全共享)、业务流程管理(设计定制、工作流自动化)、应用集成(第三方应用、移动应用)及客户服务(支持培训、反馈改进)。通过优化这些能力,可为企业提供更高效、可靠的 SaaS 服务。
79 11
|
运维 算法 安全
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——4. 特色研发能力
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——4. 特色研发能力
373 1
|
数据采集 调度 监控
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——3. 研发:高效建设,稳定运行
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——3. 研发:高效建设,稳定运行
374 0
|
SQL API 数据安全/隐私保护
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——6. 数据服务:集中管控,快速服务业务系统
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——6. 数据服务:集中管控,快速服务业务系统
236 0
|
运维 分布式计算 监控
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览
518 0
|
存储 安全
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——一、数据建设与治理的现状与诉求
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——一、数据建设与治理的现状与诉求
166 0
|
数据建模 供应链 定位技术
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——2. 规划:高屋建瓴,总览企业数据体系
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——2. 规划:高屋建瓴,总览企业数据体系
254 0
|
分布式计算 DataWorks 对象存储
全链路数据湖开发治理解决方案2.0重磅升级,全面增强数据入湖、调度和治理能力
阿里云全链路数据湖开发治理解决方案能力持续升级,发布2.0版本。解决方案包含开源大数据平台E-MapReduce(EMR) , 一站式大数据数据开发治理平台DataWorks ,数据湖构建DLF,对象存储OSS等核心产品。支持EMR新版数据湖DataLake集群(on ECS)、自定义集群(on ECS)、Spark集群(on ACK)三种形态,对接阿里云一站式大数据开发治理平台DataWorks,沉淀阿里巴巴十多年大数据建设方法论,为客户完成从入湖、建模、开发、调度、治理、安全等全链路数据湖开发治理能力,帮助客户提升数据的应用效率。
1532 1
|
数据采集 存储 运维
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——(二)研发:集成、建模、发布、运维(1)
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——(二)研发:集成、建模、发布、运维(1)
676 0
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——(二)研发:集成、建模、发布、运维(1)
|
运维 监控 机器人
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——(二)研发:集成、建模、发布、运维(6)
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——(二)研发:集成、建模、发布、运维(6)
492 0

热门文章

最新文章