企业运维训练营之云上网络原理与实践课程 - 第二讲配套实验:访问4层&7层 CLB场景对比

本文涉及的产品
云服务器 ECS,每月免费额度200元 3个月
云服务器ECS,u1 2核4GB 1个月
简介: 在大量真实业务场景(如微服务)中,在CLB后端提供服务的ECS之间存在服务上的依赖关系(ECS既做客户端又做服务端),本实验以CLB后端的一个ECS来访问CLB的4层监听与7层监听的端口,以理解其转发规则的不同。

企业运维训练营之云上网络原理与实践课程

第二讲配套实验:访问4&7 CLB场景对比

 

视频地址:

https://developer.aliyun.com/learning/course/991/detail/14976

 

一、实验简介:

 

在大量真实业务场景(如微服务)中,在CLB后端提供服务的ECS之间存在服务上的依赖关系(ECS既做客户端又做服务端),本实验以CLB后端的一个ECS来访问CLB4层监听与7层监听的端口,以理解其转发规则的不同。

 

实验网址:https://developer.aliyun.com/adc/scenario/exp/e39b51556c34432faae378075ac99abb

 

二、实验步骤:

 

1. 创建资源。

 

a.   在体验实验室页面左侧,单击创建资源,创建所需资源。

b.   在页面左侧导航栏中,单击云产品资源列表,查看本次实验资源相关信息。

 

说明:

资源创建过程需要1~3分钟。完成实验资源的创建后,您可以在云产品资源列表查看已创建的资源信息,例如:IP地址、用户名和密码等。

 

2. 了解实验架构。

 image.png

本实验架构为1CLB,后端挂载了2ECS,以CLB后端的一个ECS来访问CLB4层监听与7层监听的端口。

 

3. 实验准备。

 

注:后台已创建好了对应的云产品资源,这里仅了解和核实环境和相关配置。

 

如下仅供学员了解和参考,不需要去手动创建(如了解,可跳过):

 

  • 创建ECS 参考文档:

https://help.aliyun.com/document_detail/25422.html

 

 

4. 手动安装nginx并设置自定义首页。

 

注:不同学员会有属于自己的ECS实例(后台自动创建),请以实际配置中实例的信息(idIP等)为准。系统默认资源创建过程需要1~3分钟。完成实验资源的创建后,您可以在云产品资源列表查看已创建的资源信息,例如:IP地址、用户名和密码等。

 

  • 本实验演示的ECS示例为杭州地域下的ECS,以其ECS IP为:192.168.11.180192.168.11.181做样例演示。

image.png

 

  • 在系统内手动安装nginxyum install nginx);

 

yum install nginx

image.png

 

  • /usr/share/nginx/html目录下使用本机的hostname替换原有的index.html文件,内容为ECS本机的hostname

 

cd /usr/share/nginx/html/

hostname > index.html

 

  • 最后启动nginx服务;

 

service nginx start

 image.png

 

5. ECS1ECS2加入到CLB的默认服务器组

 

注:不同学员会有属于自己的CLB实例(后台自动创建),请以实际配置中实例的信息(idIP等)为准。

 

  • 本实验演示的杭州地域clb实例IDlb-bp1srfo9275l6vlxq9mg2IP地址为192.168.11.175

image.png

 

  • ECS1ECS2加入到CLB的默认服务器组内。

 image.png

image.png

image.png

image.png

 

6. 创建CLB实例的监听,80端口的TCP8080端口的HTTP,并配置默认服务器组。

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

 image.png

image.png

7. CLB监听的后端服务器ECS1上安装telnet,以便访问4CLB80端口,同时在ECS1内部抓包。

 

  • 抓包时注意需要抓取any网卡:

由于回包时目标IP为本机IP,在当前的系统路由表中,本机IP的路由会走loop网卡,如果只抓eth0,会出现回包无法抓到的情况。

image.png

 

  • 访问时为什么会出现时通时不通的现象?

 image.png

image.png

 

8. CLB监听的后端服务器上测试ECS1访问4CLB80端口,并在ECS1内部抓包。

 

抓包时注意需要抓取any网卡。

 

[root@ECS1 ~]# tcpdump -nni any port 80 and not net 100.64.0.0/10

13:45:15.962843 IP 192.168.11.181.48092 > 192.168.11.175.80: Flags [S], seq 3268167503, win 29200, options [mss 1460,sackOK,TS val 818983 ecr 0,nop,wscale 7], length 0

13:45:15.964410 IP 192.168.11.181.48092 > 192.168.11.181.80: Flags [S], seq 3268167503, win 29200, options [mss 1460,sackOK,TS val 818983 ecr 0,nop,wscale 7], length 0

13:45:15.964429 IP 192.168.11.181.80 > 192.168.11.181.48092: Flags [S.], seq 1270453242, ack 3268167504, win 43690, options [mss 65495,sackOK,TS val 818984 ecr 818983,nop,wscale 7], length 0

13:45:15.964439 IP 192.168.11.181.48092 > 192.168.11.181.80: Flags [R], seq 3268167504, win 0, length 0

 

9. CLB监听的后端服务器上测试ECS1访问4CLB8080端口,并在ECS内部抓包。

 

  • 访问时建议需要使用curl,因为:

7层监听是http层面的动作,如果只用telnet来测试,三次握手建立好了之后,客户端和proxy集群(tengine集群)进行了连接,没有发起任何数据的时候,在CLB部分集群上不会向后端ECS建立连接发送数据的,所以必须用curl实际的发送一些7层的数据。

 

  • 抓包时我们关注的信息有哪些?

image.png

  • 除了192开头的IP,我们还可以看到来自100网段的IP数据包,这些数据包正是7层监听交互的表现。

 

14:24:03.135859 IP 192.168.11.181.34290 > 192.168.11.175.8080: Flags [S], seq 1995438430, win 29200, options [mss 1460,sackOK,TS val 3146156 ecr 0,nop,wscale 7], length 0

14:24:03.137054 IP 192.168.11.175.8080 > 192.168.11.181.34290: Flags [S.], seq 2376897256, ack 1995438431, win 29200, options [mss 1440,nop,nop,sackOK,nop,wscale 9], length 0

14:24:03.137071 IP 192.168.11.181.34290 > 192.168.11.175.8080: Flags [.], ack 1, win 229, length 0

14:24:03.137179 IP 192.168.11.181.34290 > 192.168.11.175.8080: Flags [P.], seq 1:84, ack 1, win 229, length 83: HTTP: GET / HTTP/1.1

14:24:03.138336 IP 192.168.11.175.8080 > 192.168.11.181.34290: Flags [.], ack 84, win 58, length 0

14:24:03.139023 IP 100.122.64.142.2292 > 192.168.11.181.80: Flags [S], seq 1176088477, win 28480, options [mss 1424,sackOK,TS val 4003383056 ecr 0,nop,wscale 9], length 0

14:24:03.139038 IP 192.168.11.181.80 > 100.122.64.142.2292: Flags [S.], seq 2293269875, ack 1176088478, win 28960, options [mss 1460,sackOK,TS val 3146159 ecr 4003383056,nop,wscale 7], length 0

14:24:03.140054 IP 100.122.64.142.2292 > 192.168.11.181.80: Flags [.], ack 1, win 56, options [nop,nop,TS val 4003383058 ecr 3146159], length 0

14:24:03.140073 IP 100.122.64.142.2292 > 192.168.11.181.80: Flags [P.], seq 1:162, ack 1, win 56, options [nop,nop,TS val 4003383058 ecr 3146159], length 161: HTTP: GET / HTTP/1.1

14:24:03.140078 IP 192.168.11.181.80 > 100.122.64.142.2292: Flags [.], ack 162, win 235, options [nop,nop,TS val 3146160 ecr 4003383058], length 0

14:24:03.140254 IP 192.168.11.181.80 > 100.122.64.142.2292: Flags [FP.], seq 1:264, ack 162, win 235, options [nop,nop,TS val 3146160 ecr 4003383058], length 263: HTTP: HTTP/1.1 200 OK

14:24:03.141713 IP 100.122.64.142.2292 > 192.168.11.181.80: Flags [F.], seq 162, ack 265, win 58, options [nop,nop,TS val 4003383059 ecr 3146160], length 0

14:24:03.141732 IP 192.168.11.181.80 > 100.122.64.142.2292: Flags [.], ack 163, win 235, options [nop,nop,TS val 3146161 ecr 4003383059], length 0

14:24:03.141742 IP 192.168.11.175.8080 > 192.168.11.181.34290: Flags [P.], seq 1:247, ack 84, win 58, length 246: HTTP: HTTP/1.1 200 OK

14:24:03.141754 IP 192.168.11.181.34290 > 192.168.11.175.8080: Flags [.], ack 247, win 237, length 0

14:24:03.141889 IP 192.168.11.181.34290 > 192.168.11.175.8080: Flags [F.], seq 84, ack 247, win 237, length 0

14:24:03.143047 IP 192.168.11.175.8080 > 192.168.11.181.34290: Flags [F.], seq 247, ack 85, win 58, length 0

14:24:03.143056 IP 192.168.11.181.34290 > 192.168.11.175.8080: Flags [.], ack 248, win 237, length 0

 

三、实验分析

 

1、实验结果

 

从以上的实验结果来看,ECS1访问CLB80端口,会出现时通时不通的表现,而访问CLB8080端口,则是100%连通。

 

2、实验分析

 image.png

 

a.   由于四层CLB下, CLB会将客户端的原始链接转发到后端服务器上,因此在这种情况下,ECS1访问CLB内网地址的80端口时相当于访问自己的80端口,从抓包可看到源目IP都是自己,在回SYN_ACK时直接由lo网卡转发到本机,内核未看到SYN_ACK包对应五元组的SYN包,导致内核直接发送了RST

 

b.   七层CLB下,由于CLB在中间隔离了TCP链接,因此ECS1看到的源IP均为CLB的内网IP,因此地址不会冲突。

 

相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2天前
|
存储 监控 安全
云端防御战线:云计算环境下的网络安全策略与实践
【4月更文挑战第23天】在数字化转型的浪潮中,云计算已成为推动企业敏捷性、可扩展性和成本效率的关键因素。然而,随着数据和服务迁移至云端,传统的网络边界逐渐模糊,给网络安全带来了前所未有的挑战。本文探讨了在多租户云环境中维护信息安全的先进策略和技术,分析了云服务模型(IaaS, PaaS, SaaS)特有的安全风险,并提出了一系列针对性的安全措施和最佳实践。通过深入讨论身份与访问管理、数据加密、入侵检测系统以及合规性监控等关键技术,本文旨在为读者提供一套全面的云计算安全防护框架。
5 0
|
6天前
|
人工智能 监控 安全
构筑安全之盾:云计算环境下的网络安全策略与实践
【4月更文挑战第19天】 在数字化转型的浪潮中,云计算已成为企业IT架构的核心组成部分。然而,随着云服务使用的普及化,网络安全问题亦变得日益复杂和挑战性。本文将深入探讨如何在云计算环境中实施有效的网络安全策略,保障数据的安全性和完整性。我们将从云服务模型出发,分析不同服务模型下的安全威胁,并提出相应的防护措施。文章还将讨论信息安全管理的最佳实践,包括加密技术、身份验证、访问控制以及安全监控等方面,旨在为企业提供一套全面的云计算安全防护框架。
|
8天前
|
网络协议 Java API
深度剖析:Java网络编程中的TCP/IP与HTTP协议实践
【4月更文挑战第17天】Java网络编程重在TCP/IP和HTTP协议的应用。TCP提供可靠数据传输,通过Socket和ServerSocket实现;HTTP用于Web服务,常借助HttpURLConnection或Apache HttpClient。两者结合,构成网络服务基础。Java有多种高级API和框架(如Netty、Spring Boot)简化开发,助力高效、高并发的网络通信。
|
9天前
|
监控 安全 网络安全
云端防御:云计算环境中的网络安全策略与实践
【4月更文挑战第15天】 在数字化转型的时代,云计算已成为企业运营不可或缺的技术支撑。然而,随着云服务模式的广泛采纳,网络安全挑战亦随之而来。本文深入探讨了云计算环境下的安全威胁,分析了云服务模型对安全策略的影响,并提出了一系列创新的网络安全防护措施。通过研究最新的加密技术、访问控制机制和持续监控方法,文章旨在为企业提供一个综合性的网络安全框架,以确保其云基础设施和数据的安全性和完整性。
34 8
|
16天前
|
安全 网络安全 网络虚拟化
虚拟网络设备与网络安全:深入分析与实践应用
在数字化时代📲,网络安全🔒成为了企业和个人防御体系中不可或缺的一部分。随着网络攻击的日益复杂和频繁🔥,传统的物理网络安全措施已经无法满足快速发展的需求。虚拟网络设备🖧,作为网络架构中的重要组成部分,通过提供灵活的配置和强大的隔离能力🛡️,为网络安全提供了新的保障。本文将从多个维度深入分析虚拟网络设备是如何保障网络安全的,以及它们的实际意义和应用场景。
|
7月前
|
缓存 运维 Linux
Linux(CentOS)运维脚本工具集合
Linux(CentOS)运维脚本工具集合
148 2
|
21天前
|
运维 Linux Shell
linux运维常用命令
linux运维常用命令
|
1月前
|
监控 网络协议 Linux
Linux 命令大全 & CentOS常用运维命令
Linux 命令大全 & CentOS常用运维命令
154 0
|
2月前
|
运维 Linux 数据安全/隐私保护
【Linux专题_01】宝塔面板安装及运维
【Linux专题_01】宝塔面板安装及运维
|
2月前
|
Kubernetes Linux 开发工具
容器开发运维人员的 Linux 操作机配置优化建议
容器开发运维人员的 Linux 操作机配置优化建议