JDK1.8 创建线程池有哪几种方式?
- newFixedThreadPool
定长线程池,每当提交一个任务就创建一个线程,直到达到线程池的最大数量,这时线程数量不再变化,当线程发生错误结束时,线程池会补充一个新的线程
测试代码:
public class TestThreadPool { //定长线程池,每当提交一个任务就创建一个线程,直到达到线程池的最大数量,这时线程数量不再变化,当线程发生错误结束时,线程池会补充一个新的线程 static ExecutorService fixedExecutor = Executors.newFixedThreadPool(3); public static void main(String[] args) { testFixedExecutor(); } //测试定长线程池,线程池的容量为3,提交6个任务,根据打印结果可以看出先执行前3个任务,3个任务结束后再执行后面的任务 private static void testFixedExecutor() { for (int i = 0; i < 6; i++) { final int index = i; fixedExecutor.execute(new Runnable() { public void run() { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); } }); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); fixedExecutor.shutdown(); } }
打印结果:
pool-1-thread-1 index:0 pool-1-thread-2 index:1 pool-1-thread-3 index:2 4秒后... pool-1-thread-3 index:5 pool-1-thread-1 index:3 pool-1-thread-2 index:4
- newCachedThreadPool
可缓存的线程池,如果线程池的容量超过了任务数,自动回收空闲线程,任务增加时可以自动添加新线程,线程池的容量不限制
测试代码:
public class TestThreadPool { //可缓存的线程池,如果线程池的容量超过了任务数,自动回收空闲线程,任务增加时可以自动添加新线程,线程池的容量不限制 static ExecutorService cachedExecutor = Executors.newCachedThreadPool(); public static void main(String[] args) { testCachedExecutor(); } //测试可缓存线程池 private static void testCachedExecutor() { for (int i = 0; i < 6; i++) { final int index = i; cachedExecutor.execute(new Runnable() { public void run() { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); } }); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); cachedExecutor.shutdown(); } }
打印结果:
pool-1-thread-1 index:0 pool-1-thread-6 index:5 pool-1-thread-5 index:4 pool-1-thread-4 index:3 pool-1-thread-3 index:2 pool-1-thread-2 index:1 4秒后...
- newScheduledThreadPool 定长线程池,可执行周期性的任务
测试代码:
public class TestThreadPool { //定长线程池,可执行周期性的任务 static ScheduledExecutorService scheduledExecutor = Executors.newScheduledThreadPool(3); public static void main(String[] args) { testScheduledExecutor(); } //测试定长、可周期执行的线程池 private static void testScheduledExecutor() { for (int i = 0; i < 3; i++) { final int index = i; //scheduleWithFixedDelay 固定的延迟时间执行任务;scheduleAtFixedRate 固定的频率执行任务 scheduledExecutor.scheduleWithFixedDelay(new Runnable() { public void run() { System.out.println(Thread.currentThread().getName() + " index:" + index); } }, 0, 3, TimeUnit.SECONDS); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); scheduledExecutor.shutdown(); } }
打印结果:
pool-1-thread-1 index:0 pool-1-thread-2 index:1 pool-1-thread-3 index:2 pool-1-thread-1 index:0 pool-1-thread-3 index:1 pool-1-thread-1 index:2 4秒后...
- newSingleThreadExecutor
单线程的线程池,线程异常结束,会创建一个新的线程,能确保任务按提交顺序执行
测试代码:
public class TestThreadPool { //单线程的线程池,线程异常结束,会创建一个新的线程,能确保任务按提交顺序执行 static ExecutorService singleExecutor = Executors.newSingleThreadExecutor(); public static void main(String[] args) { testSingleExecutor(); } //测试单线程的线程池 private static void testSingleExecutor() { for (int i = 0; i < 3; i++) { final int index = i; singleExecutor.execute(new Runnable() { public void run() { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); } }); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); singleExecutor.shutdown(); } }
打印结果:
pool-1-thread-1 index:0 4秒后... pool-1-thread-1 index:1 pool-1-thread-1 index:2
- newSingleThreadScheduledExecutor
单线程可执行周期性任务的线程池
测试代码:
public class TestThreadPool { //单线程可执行周期性任务的线程池 static ScheduledExecutorService singleScheduledExecutor = Executors.newSingleThreadScheduledExecutor(); public static void main(String[] args) { testSingleScheduledExecutor(); } //测试单线程可周期执行的线程池 private static void testSingleScheduledExecutor() { for (int i = 0; i < 3; i++) { final int index = i; //scheduleWithFixedDelay 固定的延迟时间执行任务;scheduleAtFixedRate 固定的频率执行任务 singleScheduledExecutor.scheduleAtFixedRate(new Runnable() { public void run() { System.out.println(Thread.currentThread().getName() + " index:" + index); } }, 0, 3, TimeUnit.SECONDS); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); singleScheduledExecutor.shutdown(); } }
打印结果
pool-1-thread-1 index:0 pool-1-thread-1 index:1 pool-1-thread-1 index:2 pool-1-thread-1 index:0 pool-1-thread-1 index:1 pool-1-thread-1 index:2 4秒后...
newWorkStealingPool
任务窃取线程池,不保证执行顺序,适合任务耗时差异较大。
线程池中有多个线程队列,有的线程队列中有大量的比较耗时的任务堆积,而有的线程队列却是空的,就存在有的线程处于饥饿状态,当一个线程处于饥饿状态时,它就会去其它的线程队列中窃取任务。解决饥饿导致的效率问题。
默认创建的并行 level 是 CPU 的核数。主线程结束,即使线程池有任务也会立即停止。
测试代码:
public class TestThreadPool { //任务窃取线程池 static ExecutorService workStealingExecutor = Executors.newWorkStealingPool(); public static void main(String[] args) { testWorkStealingExecutor(); } //测试任务窃取线程池 private static void testWorkStealingExecutor() { for (int i = 0; i < 10; i++) {//本机 CPU 8核,这里创建10个任务进行测试 final int index = i; workStealingExecutor.execute(new Runnable() { public void run() { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); } }); } try { Thread.sleep(4000);//这里主线程不休眠,不会有打印输出 } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); // workStealingExecutor.shutdown(); } }
打印结果如下,index:8,index:9并未打印出:
ForkJoinPool-1-worker-1 index:0 ForkJoinPool-1-worker-7 index:6 ForkJoinPool-1-worker-5 index:4 ForkJoinPool-1-worker-3 index:2 ForkJoinPool-1-worker-4 index:3 ForkJoinPool-1-worker-2 index:1 ForkJoinPool-1-worker-0 index:7 ForkJoinPool-1-worker-6 index:5 4秒后..
Executors创建线程池有哪几种方式?
Executors如何创建线程池?
Executors 类是从 JDK 1.5 开始就新增的线程池创建的静态工厂类,它就是创建线程池的,但是很多的大厂已经不建议使用该类去创建线程池。原因在于,该类创建的很多线程池的内部使用了无界任务队列,在并发量很大的情况下会导致 JVM 抛出 OutOfMemoryError,直接让 JVM 崩溃,影响严重。
但是 Executors 类究竟是如何使用的?
\1. newFixedThreadPool,创建定长线程池,每当提交一个任务就创建一个线程,直到达到线程池的最大数量,这时线程数量不再变化,当线程发生错误结束时,线程池会补充一个新的线程。
package constxiong.concurrency.a011; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /** * 测试创建定长线程池 * @author ConstXiong */ public class TestNewFixedThreadPool { public static void main(String[] args) { //创建工作线程数为 3 的线程池,每当提交一个任务就创建一个线程,直到达到线程池的最大数量,这时线程数量不再变化,当线程发生错误结束时,线程池会补充一个新的线程 ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3); //提交 6 个任务 for (int i = 0; i <6; i++) { final int index = i; fixedThreadPool.execute(() -> { try { //休眠 3 秒 Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); }); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); //关闭线程池后,已提交的任务仍然会执行完 fixedThreadPool.shutdown(); } }
打印结果:
pool-1-thread-2 index:1 pool-1-thread-3 index:2 pool-1-thread-1 index:0 4秒后... pool-1-thread-1 index:4 pool-1-thread-3 index:5 pool-1-thread-2 index:3
\2. newCachedThreadPool,创建可缓存的线程池,如果线程池的容量超过了任务数,自动回收空闲线程,任务增加时可以自动添加新线程,线程池的容量不限制。
package constxiong.concurrency.a011; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /** * 测试创建可缓存的线程池 * @author ConstXiong */ public class TestNewCachedThreadPool { public static void main(String[] args) { //创建可缓存的线程池,如果线程池的容量超过了任务数,自动回收空闲线程,任务增加时可以自动添加新线程,线程池的容量不限制 ExecutorService cachedThreadPool = Executors.newCachedThreadPool(); for (int i = 0; i <6; i++) { final int index = i; cachedThreadPool.execute(() -> { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); }); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); cachedThreadPool.shutdown(); } }
打印结果可以看出,创建的线程数与任务数相等
pool-1-thread-1 index:0 pool-1-thread-3 index:2 pool-1-thread-6 index:5 pool-1-thread-4 index:3 pool-1-thread-5 index:4 pool-1-thread-2 index:1 4秒后...
\3. newScheduledThreadPool,创建定长线程池,可执行周期性的任务。
package constxiong.concurrency.a011; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; /** * 测试创建定长线程池,可执行周期性的任务 * @author ConstXiong */ public class TestNewScheduledThreadPool { public static void main(String[] args) { //创建定长线程池,可执行周期性的任务 ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(3); for (int i = 0; i <3; i++) { final int index = i; //scheduleWithFixedDelay 固定的延迟时间执行任务; scheduleAtFixedRate 固定的频率执行任务 scheduledThreadPool.scheduleWithFixedDelay(() -> { System.out.println(Thread.currentThread().getName() + " index:" + index); }, 0, 3, TimeUnit.SECONDS); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); scheduledThreadPool.shutdown(); } }
打印结果:
pool-1-thread-1 index:0 pool-1-thread-3 index:2 pool-1-thread-2 index:1 pool-1-thread-1 index:0 pool-1-thread-2 index:1 pool-1-thread-3 index:2 4秒后...
\4. newSingleThreadExecutor,创建单线程的线程池,线程异常结束,会创建一个新的线程,能确保任务按提交顺序执行。
package constxiong.concurrency.a011; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /** * 测试单线程的线程池 * @author ConstXiong */ public class TestNewSingleThreadExecutor { public static void main(String[] args) { //单线程的线程池,线程异常结束,会创建一个新的线程,能确保任务按提交顺序执行 ExecutorService singleThreadPool = Executors.newSingleThreadExecutor(); //提交 3 个任务 for (int i = 0; i <3; i++) { final int index = i; singleThreadPool.execute(() -> { //执行第二个任务时,报错,测试线程池会创建新的线程执行任务三 if (index == 1) { throw new RuntimeException("线程执行出现异常"); } try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); }); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); singleThreadPool.shutdown(); } }
打印结果可以看出,即使任务出现了异常,线程池还是会自动补充一个线程继续执行下面的任务
pool-1-thread-1 index:0 Exception in thread "pool-1-thread-1" java.lang.RuntimeException: 线程执行出现异常 at constxiong.concurrency.a011.TestNewSingleThreadExecutor.lambda$0(TestNewSingleThreadExecutor.java:21) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 4秒后... pool-1-thread-2 index:2
\5. newSingleThreadScheduledExecutor,创建单线程可执行周期性任务的线程池。
package constxiong.concurrency.a011; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; /** * 测试单线程可执行周期性任务的线程池 * @author ConstXiong */ public class TestNewSingleThreadScheduledExecutor { public static void main(String[] args) { //创建单线程可执行周期性任务的线程池 ScheduledExecutorService singleScheduledThreadPool = Executors.newSingleThreadScheduledExecutor(); //提交 3 个固定频率执行的任务 for (int i = 0; i <3; i++) { final int index = i; //scheduleWithFixedDelay 固定的延迟时间执行任务; scheduleAtFixedRate 固定的频率执行任务 singleScheduledThreadPool.scheduleAtFixedRate(() -> { System.out.println(Thread.currentThread().getName() + " index:" + index); }, 0, 3, TimeUnit.SECONDS); } try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("4秒后..."); singleScheduledThreadPool.shutdown(); } }
打印机结果可以看出 0-2 任务都被执行了 2 个周期
pool-1-thread-1 index:0 pool-1-thread-1 index:1 pool-1-thread-1 index:2 pool-1-thread-1 index:0 pool-1-thread-1 index:1 pool-1-thread-1 index:2 4秒后...
\6. newWorkStealingPool,创建任务可窃取线程池,空闲线程可以窃取其他任务队列的任务,不保证执行顺序,适合任务耗时差异较大。
package constxiong.concurrency.a011; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; /** * 测试可任务窃取线程池 * @author ConstXiong */ public class TestNewWorkStealingPool { public static void main(String[] args) { //创建 4个工作线程的 任务可窃取线程池,如果不设置并行数,默认取 CPU 总核数 ExecutorService workStealingThreadPool = Executors.newWorkStealingPool(4); for (int i = 0; i <10; i++) { final int index = i; workStealingThreadPool.execute(() -> { try { //模拟任务执行时间为 任务编号为0 1 2 的执行时间需要 3秒;其余任务200 毫秒,导致任务时间差异较大 if (index <= 2) { Thread.sleep(3000); } else { Thread.sleep(200); } } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + " index:" + index); }); } try { Thread.sleep(10000);//休眠 10 秒 } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("10秒后..."); } }
打印结果可以看出,线程 ForkJoinPool-1-worker-0 把3-9的任务都执行完
ForkJoinPool-1-worker-0 index:3 ForkJoinPool-1-worker-0 index:4 ForkJoinPool-1-worker-0 index:5 ForkJoinPool-1-worker-0 index:6 ForkJoinPool-1-worker-0 index:7 ForkJoinPool-1-worker-0 index:8 ForkJoinPool-1-worker-0 index:9 ForkJoinPool-1-worker-1 index:0 ForkJoinPool-1-worker-3 index:2 ForkJoinPool-1-worker-2 index:1 10秒后...