黑客如何使用AI和ML来瞄准企业

简介: 黑客还利用机器学习和人工智能,用不准确的数据破坏人工智能模型,从而破坏环境。机器学习和人工智能模型依靠正确标记的数据样本,来构建准确和可重复的检测配置文件。通过引入看起来类似于恶意软件的良性文件或创建被证明是误报的行为模式,黑客可以诱骗AI模型,使其相信攻击行为不是恶意的,还可以通过引入AI训练标记为安全的恶意文件来毒化AI模型。

网络安全得益于AI和ML的进步。今天的安全团队被关于潜在可疑活动的数据所淹没,常常大海捞针。人工智能通过网络流量、恶意软件指标和用户行为趋势中的模式识别,帮助安全团队在这些数据中发现真正的威胁。

而黑客常常利用人工智能和机器学习方面来对付企业。例如轻松访问云环境,使得开始使用AI并构建强大、有能力的学习模型变得简单。

让我们看看黑客如何使用人工智能和机器学习来瞄准企业,以及防止以人工智能为重点的网络攻击的方法。

黑客使用AI对抗安全团队的3种方式
1.在基于人工智能的工具测试恶意软件是否成功
黑客能以多种方式使用ML。第一种方法是通过构建他们自己的机器学习环境,并对自己的恶意软件和攻击实践进行建模,以确定安全团队寻找的事件和行为的类型。

例如,一个复杂的恶意软件可能会修改本地系统库和组件,在内存中运行进程,并与黑客控制基础设施拥有的一个或多个域通信。所有这些活动结合在一起创建了一个称为战术、技术和程序(TTP)的配置文件。机器学习模型可以观察TTP,并使用它们来构建检测能力。

通过观察和预测安全团队如何检测TTP,黑客可以巧妙而频繁地修改指标和行为,领先于依赖基于人工智能的工具检测攻击的安全团队。

2.用不准确的数据破坏AI模型
黑客还利用机器学习和人工智能,用不准确的数据破坏人工智能模型,从而破坏环境。机器学习和人工智能模型依靠正确标记的数据样本,来构建准确和可重复的检测配置文件。通过引入看起来类似于恶意软件的良性文件或创建被证明是误报的行为模式,黑客可以诱骗AI模型,使其相信攻击行为不是恶意的,还可以通过引入AI训练标记为安全的恶意文件来毒化AI模型。

3.绘制现有AI模型
黑客积极寻求绘制网络安全供应商和运营团队使用的现有和正在开发的AI模型。通过了解人工智能模型的功能及其作用,黑客可以在其周期内积极干扰机器学习操作和模型。这可以使黑客通过欺骗系统来影响模型,使系统有利于黑客。它还可以让黑客通过巧妙地修改数据来避开基于已识别模式的检测,从而完全避开已知模型。

如何防御以人工智能为中心的攻击
防御以人工智能为重点的攻击是极其困难的。安全团队必须确保与学习模型和模式开发中使用的数据相关联的标签是准确的。通过确保数据具有准确的标签标识符,用于训练模型的数据集可能会变得更小,这对人工智能的效率没有帮助。

对于那些构建AI安全检测模型的人来说,在建模时引入对抗技术和策略可以帮助将模式识别与野外看到的策略结合起来。约翰霍普金斯大学的研究人员开发了木马软件框架,以帮助生成木马和其他恶意软件模式的人工智能模型。麻省理工学院(MIT)的研究人员发布了一款用于自然语言模式的工具TextFooler,该工具可能有助于构建更具弹性的人工智能模型,以检测银行欺诈等问题。

随着人工智能的重要性日益增长,黑客将寻求通过自己的研究来超越安全团队的努力。对于安全团队来说,及时了解黑客的攻击策略以防御他们是至关重要的。

相关文章
|
4天前
|
人工智能 自然语言处理 搜索推荐
AI与GIS工具引领企业变革
科技赋能企业转型:清华团队突破固态电池技术,AIGEO融合AI与GIS助力精准获客,降本增效。覆盖美妆、教育、金融等多领域,提升流量与转化率,推动数字化升级。(238字)
|
16天前
|
人工智能 安全 API
HiMarket 正式开源,为企业落地开箱即用的 AI 开放平台
我们发起 HiMarket 的初心:帮助用户从 80% 开始构建 AI 开放平台。
108 15
|
10天前
|
人工智能 自然语言处理 搜索推荐
AI营销新宠助力企业突围
AI浪潮下,企业如何借力新技术突围?OpenAI与立讯合作预示消费级AI设备爆发,AIGEO市场规模2024年将超180亿元。AI语义预检内容提升曝光效率,精准触达用户。63%网民用AI获取信息,AI搜索流量占比达42%。政策支持叠加技术进步,内容营销迎来智能变革。企业需重构策略,把握AI红利。欢迎交流咨询,共探增长新路径。
|
14天前
|
数据采集 存储 人工智能
拆解AI-Agentforce企业级智能体中台:如何让企业AI落地从“噱头”到“实效”
在GDMS峰会上,迈富时集团尹思源指出41.3%中国企业尚未布局AI Agent,已应用者亦陷“Demo化、孤岛化”困局。其发布的AI-Agentforce智能体中台,以“冰山模型”重构架构,打通认知、价值、能力三重鸿沟,覆盖内容、获客、销售、陪练、分析五大场景,助力企业实现AI从“工具”到“数字员工”的全链路协同升级。
|
2月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
174 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
|
2月前
|
人工智能 自然语言处理 前端开发
智能体三强争霸:Coze、Dify、FastGPT谁是企业AI化的最优解?
2025年AI智能体技术爆发,企业面临如何高效实现AI化的挑战。Coze、Dify、FastGPT作为三大热门平台,各具特色:Dify主打开源与全球化,Coze专注对话式AI,FastGPT深耕企业知识库。本文从技术架构、功能、部署、生态等维度深入对比,帮助企业找到最适配的AI引擎,推动智能化转型。
|
11天前
|
SQL 人工智能 Linux
SQL Server 2025 RC1 发布 - 从本地到云端的 AI 就绪企业数据库
SQL Server 2025 RC1 发布 - 从本地到云端的 AI 就绪企业数据库
138 5
SQL Server 2025 RC1 发布 - 从本地到云端的 AI 就绪企业数据库
|
6天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
133 6
|
16天前
|
人工智能 Serverless API
函数计算的云上计费演进:从请求驱动到价值驱动,助力企业走向 AI 时代
函数计算计费方式历经三阶段演进:从按请求计费,到按活跃时长毫秒级计费,再到按实际资源消耗分层计费。背后是资源调度、安全隔离与开发体验的持续优化。尤其在AI时代,低负载减免、会话亲和等技术让计费更贴近真实价值,推动Serverless向“按需使用、按量付费”终极目标迈进。