【智能优化算法】基于遗传算法实现城市交通信号优化附matlab代码

简介: 【智能优化算法】基于遗传算法实现城市交通信号优化附matlab代码

1 简介

本文设计实时优化的配置方案对道路畅通的应急决策管理具有重要意义.本文在分析交通控制基本理论的基础上,根据交叉口的实际情况并考虑信号灯的转换与车辆的启动损失时间,采用四相位对称式放行方案,以车辆在道口的总等待时间最短为目标建立起基于遗传算法的多个交叉口的面控制数学模型.本文利用MATLAB编程实时产生了基于泊松分布的交通流序列,并且为提高模型效率,使建立的模型更具有实用性,我们用VB可视化编程软件制作了一个简易的道路交通信号实时遗传算法演示平台.本文通过对模型的实时优化,算法计算和仿真,获得了在交通信号实时遗传算法的优化控制下的优化参数.

2 部分代码

%% GA%% 清空环境变量clc,clear,close allwarning offfeature jit off%% 遗传算法参数初始化maxgen = 50;                      % 进化代数,即迭代次数sizepop = 50;                     % 种群规模pcross = [0.7];                    % 交叉概率选择,0和1之间pmutation = [0.01];                 % 变异概率选择,0和1之间% 城市交通信号系统参数C = 140;L = 10;load('data.mat')  % 包含交通流量q以及饱和流量xijq = q./3600;      % 转化为秒sxij = xij./3600;  % 转化为秒s%染色体设置lenchrom=ones(1,3);    % t1、t2、t3bound=[38,59;26,37;33,44;];   % 数据范围%---------------------------种群初始化------------------------------------individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体avgfitness = [];                      %每一代种群的平均适应度bestfitness = [];                     %每一代种群的最佳适应度bestchrom = [];                       %适应度最好的染色体%% 初始化种群for i=1:sizepop    % 随机产生一个种群    individuals.chrom(i,:)=Code(lenchrom,bound); % 编码(binary和grey的编码结果为一个实数,float的编码结果为一个实数向量)    x=individuals.chrom(i,:);    % 计算适应度    individuals.fitness(i)=fun(x);   % 染色体的适应度 end%% 找最好的染色体[bestfitness bestindex] = min(individuals.fitness);bestchrom = individuals.chrom(bestindex,:);    % 最好的染色体% 记录每一代进化中最好的适应度和平均适应度trace = [bestfitness]; %% 迭代求解最佳初始阀值和权值% 进化开始for i=1:maxgen    disp(['迭代次数:  ',num2str(i)])    % 选择    individuals=Select(individuals,sizepop);    % 交叉    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);    % 变异    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound);    % 计算适应度    for j=1:sizepop        x=individuals.chrom(j,:);        % 解码        individuals.fitness(j)=fun(x);   % 染色体的适应度     end    % 找到最小和最大适应度的染色体及它们在种群中的位置    [newbestfitness,newbestindex]=min(individuals.fitness);    [worestfitness,worestindex]=max(individuals.fitness);    % 代替上一次进化中最好的染色体    if bestfitness>newbestfitness        bestfitness=newbestfitness;        bestchrom=individuals.chrom(newbestindex,:);    end    individuals.chrom(worestindex,:)=bestchrom; % 剔除最差个体    trace=[trace;bestfitness]; %记录每一代进化中最好的适应度endx = [bestchrom, C-L-sum(sum(bestchrom))]       % 最佳个体值D = trace(end)       % 延误误差DE = D./sum(sum(q));  % 平均延误E%% 遗传算法结果分析 figure('color',[1,1,1]),plot(1:length(trace),trace(:,1),'b--');title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);xlabel('进化代数');   ylabel('适应度');legend('fz最佳适应度');

3 仿真结果

4 参考文献

[1]陆志猛, 张伟强, 阮日升. 城市道路交通信号实时遗传算法的优化控制[J].  2008.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
17天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
16天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
17天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)