【PRM路径规划】基于粒子群算法实现机器人路径规划代码附matlab代码

简介: 【PRM路径规划】基于粒子群算法实现机器人路径规划代码附matlab代码

1 简介

本文提供无人机领域内的一种基于粒子群和PRM的无人机航迹规划方法,在无人机飞行空间中进行随机采点,并根据环境中禁飞区,雷达区等障碍物信息利用PRM方法构建概率地图,把连续空间的规划问题转化为拓扑空间的规划问题,之后,根据无人机的位置以及分配到的任务位置确定源点位置和目标点位置,并把无人机从源点到达目标点的路程作为优化目标函数,针对无人机航迹规划模型的特点对分配方案进行编码,利用粒子群算法对问题进行求解,在概率地图中得到一条最短的飞行路径,通过在采样的过程中增加在障碍物附近的采点量,从而强化算法在窄通道中的路径搜索,使其更适用于复杂地形.

2 部分代码

clcclear allclose allxs=0;      ys=0;      %起始点xt=1.5;    yt=8.9;    %目标点xobs=[1.5 4.0 1.2];   %障碍物(圆)yobs=[6.5 3.0 1.5];robs=[1.5 1.0 0.8];possize =81;          %种群大小gendai =200;          %演化代数w =0.9;               %权重系数c1= 2; c2 =2;         %学习学习因子dim = 5;              %每个粒子维度vmax = 1;             %速度最大值lim = [0 6 0 10];     %空间范围限制[posx,posy] = initpos(possize,dim,lim,xobs,yobs,robs,xs,ys,xt,yt);%初始化种群[ vx ,vy ] = initv(possize,dim,vmax);                 %初始化速度pbest =zeros(possize,1);  %每个粒子最优适应度pidx =zeros(possize,dim);  %每个粒子对应的位置 x方向pidy =zeros(possize,dim);  %每个粒子对应的位置 y方向maxgbest = zeros(1);    %整个过程中最优适应度maxpgdx = zeros(1,dim); %整个过程全局最优位置 x方向maxpgdy = zeros(1,dim); %整个过程全局最优位置 y方向maxfitvalueall = [];    %各代最优适应度theta=linspace(0,2*pi,100);             %绘图x坐标figure(1)                               %绘图句柄for k=1:numel(xobs)                     %循环绘制障碍物fill(xobs(k)+robs(k)*cos(theta),yobs(k)...    +robs(k)*sin(theta),[0.5 0.7 0.8]);hold on;endplot(xs,ys,'bs','MarkerSize',12,'MarkerFaceColor','y'); %绘制起始点plot(xt,yt,'kp','MarkerSize',16,'MarkerFaceColor','g'); %绘制目标点plot([xs maxpgdx xt],[ys maxpgdy yt])                   %绘制最优路径axis([0 7 0 10])                                        %设置坐标轴title('粒子群算法-路径规划');grid on;                    %设置标题 添加网格figure(2)plot(maxfitvalueall)                           %绘制适应度变化曲线title('适应度变化曲线'); grid on;               %设置标题 添加网格xlabel('代数/n'); ylabel('适应度')              %添加轴名称disp(['最优距离:',num2str(1/(maxgbest*10))])

3 仿真结果

4 参考文献

[1]张迎周, 高扬, 孙仪,等. 基于粒子群和PRM算法的无人机航迹规划方法:, CN109683630A[P]. 2019.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

5 代码下载


相关文章
|
1天前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
38 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
7天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
15天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
31 8
|
16天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。

热门文章

最新文章