【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析3

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析3

四、Flink vs. Blink


4.1 Spark Streaming、Kafka Streams、Storm等存在的问题


在设计一个低延迟、exactly once、流和批统一的,能够支撑足够大体量的复杂计算的引擎时,Spark Streaming 等的劣势就显现出来。Spark Streaming的本质还是一个基于microbatch计算的引擎。这种引擎一个天生的缺点就是每个microbatch的调度开销比较大,当我们要求的延迟越低,额外的开销就越大。这就导致了Spark Streaming实际上不是特别适合于做秒级甚至亚秒级的计算。


Kafka Streams 是从一个日志系统做起来的,它的设计目标是足够轻量,足够简洁易用。这一点很难满足我们对大体量的复杂计算的需求。


Storm是一个没有批处理能力的数据流处理器,除此之外Storm只提供了非常底层的API,用户需要自己实现很多复杂的逻辑。


4.2 Flink的优势


(1)不同于Spark,Flink是一个真正意义上的流计算引擎,和Storm类似,Flink是通过流水线数据传输实现低延迟的流处理;


(2)Flink使用了经典的Chandy-Lamport算法,能够在满足低延迟和低failover开销的基础之上,完美地解决exactly once的目标;


(3)如果用一套引擎来统一流处理和批处理,那就必须以流处理引擎为基础。Flink还提供了SQL/tableAPI这两个API,为批和流在query层的统一又铺平 了道路。因此,Flink是最合适的批和流统一的引擎;


(4)Flink在设计之初就非常在意性能相关的任务状态state和流控等相关技术的设计,这些都使得用Flink执行复杂的大规模任务能时性能更胜一筹。


4.3 Flink和Blink的主要区别


简单地说,Blink就是阿里巴巴开发的基于开源Flink的企业版计算引擎。如前面所说,虽然Flink在理论模型和架构方面有很多创新,但是在工程实现上还有不少问题。


2015年到2016年,阿里巴巴团队主要专注于解决Blink的runtime稳定性和scalability的问题:


(1)优化了集群调度策略使得Blink能够更好更合理地利用集群资源;


(2)优化了checkpoint机制,使得Blink能够很高效地处理拥有很大状态的job;


(3)优化了failover的策略,使得job在异常的时候能够更快恢复,从而对业务延迟造成更少的影响;


(4)设计了异步算子,使得Blink能够在即使被读取外部数据阻塞的同时还能继续处理其他event,从而获得整体非常高的吞吐率。


在拥有了稳定的runtime之后,开始专注于增强Blink的易用性 。所以在2016年底到现在,阿里巴巴团队大力开发Blink实时计算SQL,通过SQL作为统一API服务于各种复杂业务。从规范Streaming SQL的语义和标准,到实现UDX、join、aggregation、window等一系列SQL最重要的算子,几乎一手打造了完整的Streaming SQL,并且将这些工作推回了FLink社区,得到Flink社区的认可。


4.4 流数据的SQL查询存在的难点,以及Blink的解决方案


流计算SQL设计中最大的难点就是Stream SQL的语义和标准。这个事情在Flink和Calcite两个社区一直都在讨论研究中,后来达成共识—世界上不存在Stream SQL。流和批的计算可以自然而然地在传统SQL这一层统一。


流计算所特有的unbounded特性其实本质只是何时观测抽样计算结果,这种属性可以作为一个job的configure来设置而无需去改变用户的业务查询逻辑。为了能够使用传统SQL在流计算上执行,阿里巴巴和Flink社区一起引入了动态表的概。除了动态表之外,阿里巴巴还提出并解决了流计算撤回等其他重要的流计算场景拥有的概念。有了这些语义和功能,使用传统批处理SQL就能写出Blink流式计算的任务,这样就使得使用Blink SQL作为一个支持流处理和批处理的统一的API成为可能。


基于Blink SQL,阿里巴巴打造了新一代阿里巴巴流计算平台streamCompute。现在整个阿里集团包括搜索、推荐、广告等大部分核心流计算业务都是通过streamCompute平台来提供服务。


五、Referece


阿里云实时计算产品文档

https://help.aliyun.com/product/45029.html?spm=5176.13910061.1131226.3.60735f872nXZRJ


阿里云实时计算整体解决方案

https://developer.aliyun.com/article/765097spm=a2c6h.12873639.0.0.383449ffOD9vSk&groupCode=sc


阿里云实时计算产品案例&解决方案汇总

https://developer.aliyun.com/article/691499


Apache Flink 中文社区

https://ververica.cn/


Apache Flink 中文社区B站视频地址

https://space.bilibili.com/33807709?spm_id_from=333.788.b_765f7570696e666f.2


我的Flink学习记录专栏

https://blog.csdn.net/beiisbei/category_9882999.html


相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
1月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
327 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
285 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
3月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
489 9
Apache Flink:从实时数据分析到实时AI
|
3月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
440 0
|
2月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1102 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
3月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
404 6
|
3月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
353 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
476 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄

热门文章

最新文章

推荐镜像

更多
下一篇
oss云网关配置