【Spark Streaming】(二)DStream 编码实战

简介: 【Spark Streaming】(二)DStream 编码实战

文章目录


一、前言


二、DStream 编程模型


三、DStream 操作


3.1 套接字流:通过监听 Socket 端口来接收数据

3.2 文件流

3.2 RDD队列流

3.4 带状态的处理 StateFull


一、前言


从前一篇博客 【Spark Streaming】(一)架构及工作原理 🌺,我们了解到 Sprak Streaming 是属于 Saprk API 的扩展,它支持实时数据流(live data streams)的可扩展,高吞吐(hight-throughput) 容错(fault-tolerant)的流处理。可以接受来自KafKa、Flume、ZeroMQ、Kinesis 、Twitter或TCP套接字的数据源,处理的结果数据可以存储到文件系统、数据库、现场dashboards等。


二、DStream 编程模型


Dstream 是 Spark Streaming 中的高级抽象连续数据流,这个数据源可以从外部获得(如KafKa / Flume 等),也可以通过输入流获得,还可以通过在其他 DStream 上进行高级操作创建,DStream 是通过一组时间序列上连续的 RDD表示的,所以一个 DStream 可以看作是一个 RDDs 的序列。(关于 DStream 的深入了解,可看第一篇博客 ! 🚀)


三、DStream 操作


3.1 套接字流:通过监听 Socket 端口来接收数据


通过Scala编写程序来产生一系列的字符作为输入流:


GenerateChar:

object GenerateChar {
  def generateContext(index : Int) : String = {
    import scala.collection.mutable.ListBuffer
    val charList = ListBuffer[Char]()
    for(i <- 65 to 90)
      charList += i.toChar
    val charArray = charList.toArray
    charArray(index).toString
  }
  def index = {
    import  java.util.Random
    val rdm = new Random
    rdm.nextInt(7) 
  }
  def main(args: Array[String]) {
    val listener = new ServerSocket(9998)
    while(true){
      val socket = listener.accept()
      new Thread(){
        override def run() = {
          println("Got client connected from :"+ socket.getInetAddress)
          val out = new PrintWriter(socket.getOutputStream,true)
          while(true){
            Thread.sleep(500)
            val context = generateContext(index)  //产生的字符是字母表的前七个随机字母
            println(context)
            out.write(context + '\n')
            out.flush()
          }
          socket.close()
        }
      }.start()
    }
  }
}


ScoketStreaming:

object ScoketStreaming {
  def main(args: Array[String]) {
    //创建一个本地的StreamingContext,含2个工作线程
    val conf = new SparkConf().setMaster("local[2]").setAppName("ScoketStreaming")
    val sc = new StreamingContext(conf,Seconds(10))   //每隔10秒统计一次字符总数
    //创建珍一个DStream,连接master:9998
    val lines = sc.socketTextStream("master",9998)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
    wordCounts.print()
    sc.start()         //开始计算
    sc.awaitTermination()   //通过手动终止计算,否则一直运行下去
  }
}


运行结果:


GenerateChar 产生的数据如下:

Got client connected from :/192.168.56.137
C
G
B
C
F
G
D
G
B


ScoketStreaming 运行结果:

-------------------------------------------
Time: 1459426750000 ms
-------------------------------------------
(B,1)
(G,1)
(C,1)
-------------------------------------------
Time: 1459426760000 ms
-------------------------------------------
(B,5)
(F,3)
(D,4)
(G,3)
(C,3)
(E,1)


注意:如果是在本地运行的,setMaster 的参数必须为local[n],n >1,官网解释:

When running a Spark Streaming program locally, do not use “local” or “local[1]” as the master URL. Either ofthese means that only one thread 
will be used for running tasks locally. If you are using a input DStream based on a receiver (e.g. sockets, Kafka, Flume, etc.), then the single 
thread will be used to run the receiver,leaving no thread for processing the received data.
当在本地运行Spark Streaming程序时,Master的URL不能设置为"local"或"local[1]",这两种设置都意味着你将会只有一个线程来运行作业,如果你的Input DStream基于一个接收器
(如Kafka,Flume等),那么只有一个线程来接收数据,而没有多余的线程来处理接收到的数据。


如果是在集群上运行,为 Spark streaming 应分配的核数应该在大于接收器的数据,否则同样只接收了数据而没有能力处理。


3.2 文件流


Spark Streaming 通过监控文件系统的变化,若有新文件添加,则将它读入并作为数据流


需要注意的是:


这些文件具有相同的格式

这些文件通过原子移动或重命名文件的方式在dataDirectory创建

一旦移动这些文件,就不能再进行修改,如果在文件中追加内容,这些追加的新数据也不会被读取。


FileStreaming:

object FileStreaming {
  def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local").setAppName("FileStreaming")
    val sc = new StreamingContext(conf,Seconds(5))
    val lines = sc.textFileStream("/home/hadoop/wordCount")
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
    sc.start()
    sc.awaitTermination()
  }
}


当你在文件目录里添加文件时,Spark Streaming就会自动帮你读入并计算 ,可以读取本地目录 HDFS和其他文件系统。


注意:文件流不需要运行接收器,所以不需要分配核数


3.2 RDD队列流


使用 StreamingContext.queueStream(queueOfRDD) 创建基于 RDD队列 的 DStream ,用于调试 Spark Streaming 应用程序。 QueueStream:程序每隔1秒就创建一个RDD,Streaming每隔1秒就就对数据进行处理。

object QueueStream {
  def main(args: Array[String]) {
    val conf = new SparkConf().setMaster("local[2]").setAppName("queueStream")
    //每1秒对数据进行处理
    val ssc = new StreamingContext(conf,Seconds(1))
    //创建一个能够push到QueueInputDStream的RDDs队列
    val rddQueue = new mutable.SynchronizedQueue[RDD[Int]]()
    //基于一个RDD队列创建一个输入源
    val inputStream = ssc.queueStream(rddQueue)
    val mappedStream = inputStream.map(x => (x % 10,1))
    val reduceStream = mappedStream.reduceByKey(_ + _)
    reduceStream.print
    ssc.start()
    for(i <- 1 to 30){
      rddQueue += ssc.sparkContext.makeRDD(1 to 100, 2)   //创建RDD,并分配两个核数
      Thread.sleep(1000)                                  
    }
    ssc.stop()
  }
}


输出:

-------------------------------------------
Time: 1459595433000 ms //第1个输出
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)
............
............
-------------------------------------------
Time: 1459595463000 ms //第30个输出
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)

3.4 带状态的处理 StateFull


updateStateByKey 操作:使用updateStateByKey操作的地是为了保留key的状态,并能持续的更新;使用此功能有如下两个步骤:


  1. 定义状态,这个状态可以是任意的数据类型
  2. 定义状态更新函数, 指定一个函数根据之前的状态来确定如何更新状态。


同样以 wordCount 作为例子,不同的是每一次的输出都会累计之前的 wordCount


StateFull:

object StateFull {
  def main(args: Array[String]) {
    //定义状态更新函数
    val updateFunc = (values: Seq[Int], state: Option[Int]) => {
      val currentCount = values.foldLeft(0)(_ + _)
      val previousCount = state.getOrElse(0)
      Some(currentCount + previousCount)
    }
    val conf = new SparkConf().setMaster("local[2]").setAppName("stateFull")
    val sc = new StreamingContext(conf, Seconds(5))
    sc.checkpoint(".")    //设置检查点,存储位置是当前目录,检查点具有容错机制
    val lines = sc.socketTextStream("master", 9999)
    val words = lines.flatMap(_.split(" "))
    val wordDstream = words.map(x => (x, 1))
    val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)
    stateDstream.print()
    sc.start()
    sc.awaitTermination()
  }
}

先运行之前 GenerateChar 来产生字母,再运行 StateFull,结果如下:

-------------------------------------------
Time: 1459597690000 ms
-------------------------------------------
(B,3)
(F,1)
(D,1)
(G,1)
(C,1)
-------------------------------------------
Time: 1459597700000 ms //会累计之前的值
-------------------------------------------
(B,5)
(F,3)
(D,4)
(G,4)
(A,2)
(E,5)
(C,4)


目录
相关文章
|
24天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
69 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
42 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
92 0
|
15天前
|
分布式计算 流计算 Spark
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
56 0
|
1月前
|
SQL 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
31 0
|
1月前
|
存储 分布式计算 大数据
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
47 0
|
分布式计算 算法 大数据
大数据实战之spark安装部署
楔子 我是在2013年底第一次听说Spark,当时我对Scala很感兴趣,而Spark就是使用Scala编写的。一段时间之后,我做了一个有趣的数据科学项目,它试着去预测在泰坦尼克号上幸存。
3089 0
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
63 0
|
25天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
50 6
下一篇
无影云桌面