LeetCode(剑指 Offer)- 32 - III. 从上到下打印二叉树 III

简介: LeetCode(剑指 Offer)- 32 - III. 从上到下打印二叉树 III

题目链接:点击打开链接

题目大意:

解题思路:

相关企业

  • 字节跳动

AC 代码

  • Java


/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
// 解决方案(1)
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        List<List<Integer>> res = new ArrayList<>();
        Stack<Integer> stack = new Stack<>();
        if(root != null) queue.add(root);
        boolean reverse = false;
        while(!queue.isEmpty()) {
            List<Integer> tmp = new ArrayList<>();
            for(int i = queue.size(); i > 0; i--) {
                TreeNode node = queue.poll();
                if (reverse) {
                    stack.push(node.val);
                } else {
                    tmp.add(node.val);
                }
                if(node.left != null) queue.add(node.left);
                if(node.right != null) queue.add(node.right);
            }
            if (reverse) {
                while (!stack.isEmpty()) {
                    tmp.add(stack.pop());
                }
            }
            reverse = !reverse;
            res.add(tmp);
        }
        return res;
    }
}
// 解决方案(2)
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        List<List<Integer>> res = new ArrayList<>();
        if(root != null) queue.add(root);
        while(!queue.isEmpty()) {
            LinkedList<Integer> tmp = new LinkedList<>();
            for(int i = queue.size(); i > 0; i--) {
                TreeNode node = queue.poll();
                if(res.size() % 2 == 0) tmp.addLast(node.val);
                else tmp.addFirst(node.val);
                if(node.left != null) queue.add(node.left);
                if(node.right != null) queue.add(node.right);
            }
            res.add(tmp);
        }
        return res;
    }
}
// 解决方案(3)
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        Deque<TreeNode> deque = new LinkedList<>();
        List<List<Integer>> res = new ArrayList<>();
        if(root != null) deque.add(root);
        while(!deque.isEmpty()) {
            // 打印奇数层
            List<Integer> tmp = new ArrayList<>();
            for(int i = deque.size(); i > 0; i--) {
                // 从左向右打印
                TreeNode node = deque.removeFirst();
                tmp.add(node.val);
                // 先左后右加入下层节点
                if(node.left != null) deque.addLast(node.left);
                if(node.right != null) deque.addLast(node.right);
            }
            res.add(tmp);
            if(deque.isEmpty()) break; // 若为空则提前跳出
            // 打印偶数层
            tmp = new ArrayList<>();
            for(int i = deque.size(); i > 0; i--) {
                // 从右向左打印
                TreeNode node = deque.removeLast();
                tmp.add(node.val);
                // 先右后左加入下层节点
                if(node.right != null) deque.addFirst(node.right);
                if(node.left != null) deque.addFirst(node.left);
            }
            res.add(tmp);
        }
        return res;
    }
}
// 解决方案(4)
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        List<List<Integer>> res = new ArrayList<>();
        if(root != null) queue.add(root);
        while(!queue.isEmpty()) {
            List<Integer> tmp = new ArrayList<>();
            for(int i = queue.size(); i > 0; i--) {
                TreeNode node = queue.poll();
                tmp.add(node.val);
                if(node.left != null) queue.add(node.left);
                if(node.right != null) queue.add(node.right);
            }
            if(res.size() % 2 == 1) Collections.reverse(tmp);
            res.add(tmp);
        }
        return res;
    }
}
  • C++
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
// 解决方案(1)
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        deque<TreeNode*> deque;
        vector<vector<int>> res;
        if(root != NULL) deque.push_back(root);
        while(!deque.empty()) {
            // 打印奇数层
            vector<int> tmp;
            for(int i = deque.size(); i > 0; i--) {
                // 从左向右打印
                TreeNode* node = deque.front();
                deque.pop_front();
                tmp.push_back(node->val);
                // 先左后右加入下层节点
                if(node->left != NULL) deque.push_back(node->left);
                if(node->right != NULL) deque.push_back(node->right);
            }
            res.push_back(tmp);
            if(deque.empty()) break; // 若为空则提前跳出
            // 打印偶数层
            tmp.clear();
            for(int i = deque.size(); i > 0; i--) {
                // 从右向左打印
                TreeNode* node = deque.back();
                deque.pop_back();
                tmp.push_back(node->val);
                // 先右后左加入下层节点
                if(node->right != NULL) deque.push_front(node->right);
                if(node->left != NULL) deque.push_front(node->left);
            }
            res.push_back(tmp);
        }
        return res;
    }
};
// 解决方案(2)
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> que;
        vector<vector<int>> res;
        if(root != NULL) que.push(root);
        while(!que.empty()) {
            vector<int> tmp;
            for(int i = que.size(); i > 0; i--) {
                TreeNode* node = que.front();
                que.pop();
                tmp.push_back(node->val);
                if(node->left != NULL) que.push(node->left);
                if(node->right != NULL) que.push(node->right);
            }
            if(res.size() % 2 == 1) reverse(tmp.begin(),tmp.end());
            res.push_back(tmp);
        }
        return res;
    }
};
目录
相关文章
|
1月前
【LeetCode 31】104.二叉树的最大深度
【LeetCode 31】104.二叉树的最大深度
19 2
|
1月前
【LeetCode 29】226.反转二叉树
【LeetCode 29】226.反转二叉树
15 2
|
1月前
【LeetCode 43】236.二叉树的最近公共祖先
【LeetCode 43】236.二叉树的最近公共祖先
17 0
|
1月前
【LeetCode 38】617.合并二叉树
【LeetCode 38】617.合并二叉树
13 0
|
1月前
【LeetCode 37】106.从中序与后序遍历构造二叉树
【LeetCode 37】106.从中序与后序遍历构造二叉树
14 0
|
1月前
【LeetCode 34】257.二叉树的所有路径
【LeetCode 34】257.二叉树的所有路径
11 0
|
1月前
【LeetCode 32】111.二叉树的最小深度
【LeetCode 32】111.二叉树的最小深度
16 0
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
55 6
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
110 2