2.5W字详解 | 专门为 “数据分析师” 写的 “MySQL优化” 问题,真的好懂多了!(四)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 2.5W字详解 | 专门为 “数据分析师” 写的 “MySQL优化” 问题,真的好懂多了!(四)

④ ref

非唯一性索引,对于每个索引键的查询,返回匹配的所有行(可以0,可以1,可以多)

准备数据:

image.png

创建索引,并查看执行计划:


# 添加索引
alter table teacher add index index_name (tname) ;
# 查看执行计划
explain select * from teacher  where tname = 'tz';


结果如下:

image.png


⑤ range

检索指定范围的行 ,where后面是一个范围查询(between, >, <, >=, in)

in有时候会失效,从而转为无索引时候的ALL

# 添加索引
alter table teacher add index tid_index (tid) ;
# 查看执行计划:以下写了一种等价SQL写法,查看执行计划
explain select t.* from teacher t where t.tid in (1,2) ;
explain select t.* from teacher t where t.tid <3 ;


结果如下:

image.png


⑥ index

查询全部索引中的数据(扫描整个索引)

⑦ ALL

查询全部源表中的数据(暴力扫描全表)

image.png

注意:cid是索引字段,因此查询索引字段,只需要扫描索引表即可。但是tid不是索引字段,查询非索引字段,需要暴力扫描整个源表,会消耗更多的资源。


4)possible_keys和key

possible_keys可能用到的索引。是一种预测,不准。了解一下就好。

key指的是实际使用的索引。

# 先给course表的cname字段,添加一个索引
create index cname_index on course(cname);
# 查看执行计划
explain select t.tname ,tc.tcdesc from teacher t,teacherCard tc
where t.tcid= tc.tcid
and t.tid = (select c.tid from course c where cname = 'sql') ;


结果如下:

image.png

有一点需要注意的是:如果possible_key/key是NULL,则说明没用索引。


5)key_len

索引的长度,用于判断复合索引是否被完全使用(a,b,c)。

① 新建一张新表,用于测试

# 创建表
create table test_kl
(
  name char(20) not null default ''
);
# 添加索引
alter table test_kl add index index_name(name) ;
# 查看执行计划
explain select * from test_kl where name ='' ;


结果如下:

image.png

结果分析:因为我没有设置服务端的字符集,因此默认的字符集使用的是latin1,对于latin1一个字符代表一个字节,因此这列的key_len的长度是20,表示使用了name这个索引。


② 给test_kl表,新增name1列,该列没有设置“not null”

# 新增一个字段name1,name1可以为null
alter table test_kl add column name1 char(20) ;  
# 给name1字段,设置为索引字段
alter table test_kl add index index_name1(name1) ;
# 查看执行计划
explain select * from test_kl where name1 ='' ;


结果如下:

image.png

结果分析:如果索引字段可以为null,则mysql底层会使用1个字节用于标识。


③ 删除原来的索引name和name1,新增一个复合索引

# 删除原来的索引name和name1
drop index index_name on test_kl ;
drop index index_name1 on test_kl ;
# 增加一个复合索引 
create index name_name1_index on test_kl(name,name1);
# 查看执行计划
explain select * from test_kl where name1 = '' ; --121
explain select * from test_kl where name = '' ; --60


结果如下:

image.png

结果分析:对于下面这个执行计划,可以看到我们只使用了复合索引的第一个索引字段name,因此key_len是20,这个很清楚。再看上面这个执行计划,我们虽然仅仅在where后面使用了复合索引字段中的name1字段,但是你要使用复合索引的第2个索引字段,会默认使用了复合索引的第1个索引字段name,由于name1可以是null,因此key_len = 20 + 20 + 1 = 41呀!


④ 再次怎加一个name2字段,并为该字段创建一个索引。不同的是:该字段数据类型是varchar

# 新增一个字段name2,name2可以为null
alter table test_kl add column name2 varchar(20) ; 
# 给name2字段,设置为索引字段
alter table test_kl add index name2_index(name2) ;
# 查看执行计划
explain select * from test_kl where name2 = '' ;


结果如下:

image.png

结果分析:key_len = 20 + 1 + 2,这个20 + 1我们知道,这个2又代表什么呢?原来varchar属于可变长度,在mysql底层中,用2个字节标识可变长度。


6)ref

这里的ref的作用,指明当前表所参照的字段。

注意与type中的ref值区分。在type中,ref只是type类型的一种选项值。

# 给course表的tid字段,添加一个索引
create index tid_index on course(tid);
# 查看执行计划
explain select * from course c,teacher t 
where c.tid = t.tid  
and t.tname = 'tw';


结果如下:

image.png

结果分析:有两个索引,c表的c.tid引用的是t表的tid字段,因此可以看到显示结果为【数据库名.t.tid】,t表的t.name引用的是一个常量"tw",因此可以看到结果显示为const,表示一个常量。


7)rows(这个目前还是有点疑惑)

被索引优化查询的数据个数 (实际通过索引而查询到的数据个数)

explain select * 
from course c,teacher t  
where c.tid = t.tid
and t.tname = 'tz' ;


结果如下:

image.png

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
3月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
132 0
|
20天前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
58 6
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
2月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
107 0
|
3月前
|
人工智能 监控 搜索推荐
实时数据分析:如何利用API优化营销决策
在数字化营销中,实时数据分析是提升决策效率的关键。通过API连接数据源与应用,可快速获取广告、用户行为等实时数据,助力敏捷优化。本文详解如何利用API:从选择集成到实施分析,再到驱动决策,涵盖CTR、ROI计算及A/B测试等实践。结合电商案例,展示如何通过API监控、调整策略以提升销售额。未来,AI与预测API将进一步推动智能化营销。
121 5
|
4月前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
4月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
6月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
430 19
|
7月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
239 9
|
7月前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
689 9

推荐镜像

更多