深度讲述6款 “数据分析” 工具,告诉你数据分析应该学这个!

简介: 深度讲述6款 “数据分析” 工具,告诉你数据分析应该学这个!

“数据分析”可谓是当今社会一个超级火爆的岗位,不论是科班的,还是非科班的,都想从事这个行业,毕竟都觉得这个行业赚钱多嘛。


“数据分析”大致可以分为业务和技术两个方向,不管你是从事哪个方向,都对技能有一定的要求。业务方向,像数据运营、商业分析、产品经理等,对技术的要求相对来说低一点,编程工具你只要会用即可(肯定是越精通越好)。技术方向,像数据算法工程师、数据挖掘工程师等,对技术的要求就很高了,必须要有很好的编程能力。


工欲善其事必先利其器,说起数据分析工具,大家都会感觉很迷茫,有这么多数据分析工具,我应该学习哪个工具,它们之间的区别到底是什么?今天我们从“工具”层面带大家盘点一下,作为一名数据分析师,应该学习哪些工具呢?


1. Excel工具

image.png


说起用什么做数据分析,很多人的脑海中都会不约而同地想到Python、R、SQL、Hive等看似很难掌握的数据分析工具,它们就像数据分析路上的拦路虎一样,让人踟蹰不前。


其实,在众多的数据分析工具中,Excel属于最常用、最基础、最易上手的一款数据分析工具。Excel的功能十分强大,它不仅提供了众多的数据处理功能,像Excel函数能够帮助我们做数据整理,数据透视表帮助我们快速、高效的做各种维度分析,形形色色的图表能帮我们形象地展示出数据背后隐藏的规律,同时Excel还有很专业的数据分析工具库,包括描述性统计分析、相关系数分析等。


Excel对于转行数据分析的小白来说,应该是最友好的。大家都知道“转行”其实是一件很困难的事儿,但是你学会了Excel,是完全可以找到一份“数据”相关的工作的,只有踏进数据领域,你才有可能从事其它更多的数据岗位。


2. BI工具

BI工具是专门按照数据分析的流程进行设计的,也是专门用于数据分析的工具。仔细观察这些工具后,它们的基本流程是:【数据处理】-【数据清洗】-【数据建模】-【数据可视化】。


关于BI工具,其实有很多你估计已经用到过,比如说Tableau、Power BI,还有帆软等。今天我们就分别带着大家来盘点一下,这三款工具。


2.1Tableau

image.png

Tableau是三位斯坦福人 Dr. Pat Hanrahan, Dr. Chris Stotle, Christian Chabot 于2003年成立的,这是一款交互式数据可视化软件,它的本质其实也是Excel的数据透视表和数据透视图。


Tableau也是很好的延续了Excel,只需要简单地拖拽,就能很快地实现数据的分类汇总,然后拖拽实现各种图形的绘制,并且可以实现不同图表之间的联合。


Tableau同时支持数百种数据连接器,包括在线分析处理(OLAP)和大数据(例如NoSQL,Hadoop)以及云数据,至少现在你能学到的数据库软件,Tableau基本都能够实现与其数据之间的互动。


2.2 Power BI

Power-BI是一款(BI)商业智能软件,于2014年发布,旨在为用户提供交互式的可视化和商业智能,简单的数据共享,数据评估和可扩展的仪表板等功能。。


大家可能都知道,Power BI以前是一款Excel插件,依附于Excel,比如Power Query,PowerPrivot, Power View和Power Map等,这些插件让Excel如同装上了翅膀,瞬间高大上,慢慢地就发展成为现在的Power BI数据可视化工具。


Power BI 简单且快速,能够从 Excel电子表格或本地数据库创建图表。 同时Power BI也是可靠的、企业级的,可进行丰富的建模和实时分析,及自定义开发。因此它既是你的个人报表和可视化工具,还可用项目、部门或整个企业背后的分析和决策引擎。Power BI的分析功能很强大,它的PowerPivot 和DAX语言,让我们能够编写类似Excel中的公式,来进行复杂的高级分析。


同时,无论你的数据是简单的 Excel电子表格,还是基于云和本地混合数据仓库的集合, Power BI都可以让你轻松地连接到数据源,直观看到或发现数据的价值,与任何所希望的人进行共享。


最后我们简单说说Power BI的组成部分,大家可以自行下去查看学习。


Power BI 包含 Windows 桌面应用程序(称为 Power BI Desktop )、联机 SaaS (软件即服务)服务(称为 Power BI 服 务),及移动 Power BI 应 用(可在 Windows 手机和平板电脑及 iOS 和 Android 设备上使用)。

PowerBI有三个用于不同场景的组件:PowerQuery(数据处理组件),PowerPivot(轻量级建模组件),PowerBI Desktop(独立数据可视化程序)。

2.3 finereport



帆软是业内做报表比较久的一家公司,使用类excel风格的界面,可添加图表和数据源,也可实现大屏效果。


其实它的类Excel风格界面,应该是它区别于Tableau工具的一个很重要的点。FineReport 通过直接连接到各种数据库,就能方便快捷地自定义各种样式,从而制作周报、月报和季报、年报。


用过FineReport 的朋友,还会有另外一种体会,它的图形效果比Tableau要酷炫的多,操作起来同样也是那样的方便。


另外,FineReport 的个人版本是完全免费的,并且所有功能都是开放的,大家赶紧下去试试吧。


3. Python & R

其实不管是Excel,还是介绍的三款BI工具,它们都是为了执行特定功能,而设计出来的。如果说某一天,既定功能不能很好,或者说不能满足你的需求,那么应该怎么办呢?


这就需要我们了解,并学习一点编程语言了,最大的优势就在于:它非常强大和灵活。不管是R或者 Python,都有很多包供我们调用,同时也可以自定义函数,实现我们的某些需求。


3.1 简介

image.png


3.2 其他对比

① python与R相比速度要快。

② python的工程化应用强于R,可移植性更强。

③ python的应用场景大于R,仿佛R可以做的,Python基本可以,它不擅长的,Python也可以。

④ 如果是统计理论研究、前沿科学研究,R比python更胜一筹。R的使用人群主要是一些高校、医药的统计学家,这就是为什么大学老师都用R的原因。


相关文章
|
14天前
|
监控 数据可视化 数据挖掘
数据看板制作工具评测:这6款工具能如何提升企业的数据分析效率?
本文介绍了6款数据看板制作工具,包括板栗看板、Tableau、Power BI、Qlik Sense、Google Data Studio和Looker,从功能、适用场景等方面进行了详细对比,旨在帮助企业选择最合适的工具以实现高效的数据可视化和管理决策。
|
19天前
|
数据挖掘 关系型数据库 Serverless
利用数据分析工具评估特定业务场景下扩缩容操作对性能的影响
通过以上数据分析工具的运用,可以深入挖掘数据背后的信息,准确评估特定业务场景下扩缩容操作对 PolarDB Serverless 性能的影响。同时,这些分析结果还可以为后续的优化和决策提供有力的支持,确保业务系统在不断变化的环境中保持良好的性能表现。
25 2
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
56 2
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
44 2
|
6月前
|
文字识别 算法 数据挖掘
视觉智能开放平台产品使用合集之对于统计研究和数据分析,有哪些比较好的工具推荐
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
7月前
|
数据可视化 数据挖掘 BI
数据分析工具
【5月更文挑战第17天】数据分析工具
73 6
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python数据分析工具有哪些
【7月更文挑战第3天】Python数据分析工具有哪些
183 58
|
4月前
|
SQL 数据挖掘 关系型数据库
SQL中的聚合函数:数据分析的强大工具
【8月更文挑战第31天】
154 0
|
5月前
|
人工智能 数据挖掘 Python
提升办公生产力工具——AI数据分析应用小浣熊
办公小浣熊广泛应用于日常数据分析、财务分析、商业分析、销售预测、市场分析等多个领域,为用户提供了强大的支持。
提升办公生产力工具——AI数据分析应用小浣熊
|
5月前
|
数据挖掘 大数据 Linux
探索Linux中的snice命令:一个虚构但启发性的数据分析工具
`snice`是一个想象中的Linux命令,用于低优先级地从大数据集中抽样数据。它结合`nice`和`sampling`,支持多种抽样策略,如随机和分层。参数包括指定样本数、策略、输入输出文件和进程优先级。示例:`snice -n 1000 -s random -i large_log.txt -o sample_log.txt`。使用时注意资源管理、数据完整性及权限,并与其它工具结合使用。虽然虚构,但体现了Linux工具在数据分析中的潜力。

热门文章

最新文章